376
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin

ORCID Icon, ORCID Icon, , , &
Pages 385-404 | Received 05 Sep 2020, Accepted 13 Oct 2020, Published online: 28 Oct 2020

References

  • Bhattacharya K, Banerjee SL, Das S, et al. REDOX responsive fluorescence active glycopolymer based nanogel: a potential material for targeted anticancer drug delivery. ACS Appl Bio Mater. 2019;2(6):2587–2599.
  • Li B, Xu Q, Li X, et al. Redox-responsive hyaluronic acid nanogels for hyperthermia- assisted chemotherapy to overcome multidrug resistance . Carbohydr Polym. 2019;203:378–385.
  • Masters GA, Krilov L, Bailey HH, et al. Clinical cancer advances 2015: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2015;33(7):786–809.
  • Park H, Choi Y, Jeena M, et al. Reduction‐triggered self‐cross‐linked hyperbranched polyglycerol nanogels for intracellular delivery of drugs and proteins. Macromol Biosci. 2018;18(4):1700356.
  • Noree S, Tangpasuthadol V, Kiatkamjornwong S, et al. Cascade post-polymerization modification of single pentafluorophenyl ester-bearing homopolymer as a facile route to redox-responsive nanogels. J Colloid Interface Sci. 2017;501:94–102.
  • Chen S, Bian Q, Wang P, et al. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem. 2017;8(39):6150–6157.
  • Waleka E, Mackiewicz M, Romanski J, et al. Degradable nanohydrogel with high doxorubicin loadings exhibiting controlled drug release and decreased toxicity against healthy cells. Int J Pharm. 2020; 579:119188.
  • Wu J, Eisenberg A. Proton diffusion across membranes of vesicles of poly(styrene-b-acrylic acid) diblock copolymers . J Am Chem Soc. 2006;128(9):2880–2884.
  • Pan T, Zou H, Sun H, et al. Construction of redox responsive vesicles based on a supra‐amphiphile for enzyme confinement. Chin J Chem. 2017;35(6):871–875.
  • Li W, Yoon JA, Matyjaszewski K. Dual-reactive surfactant used for synthesis of functional nanocapsules in miniemulsion. J Am Chem Soc. 2010;132(23):7823–7825.
  • Kim E, Kim D, Jung H, et al. Facile, template‐free synthesis of stimuli‐responsive polymer nanocapsules for targeted drug delivery. Angew Chem. 2010;122(26):4507–4510.
  • Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci. 2006;103(16):6315–6320.
  • Kim SH, Jeong JH, Chun KW, et al. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate . Langmuir. 2005;21(19):8852–8857.
  • Ende AEvd, Kravitz EJ, Harth E. Approach to formation of multifunctional polyester particles in controlled nanoscopic dimensions. J Am Chem Soc. 2008;130(27):8706–8713.
  • Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci. 2006;31(4):359–397.
  • Vicent MJ, Greco F, Nicholson RI, et al. Polymer therapeutics designed for a combination therapy of hormone‐dependent cancer. Angew Chem. 2005;117(26):4129–4134.
  • Liu S, Maheshwari R, Kiick KL. Polymer-based therapeutics. Macromolecules. 2009;42(1):3–13.
  • Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics. 2019;11(8):381.
  • Blanazs A, Armes SP, Ryan AJ. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications . Macromol Rapid Commun. 2009;30(4-5):267–277.
  • Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release. 2009;138(3):214–223.
  • Xiong X-B, Falamarzian A, Garg SM, et al. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release. 2011;155(2):248–261.
  • Behl G, Kumar P, Sikka M, et al. PEG-coumarin nanoaggregates as π-π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery. J Biomater Sci Polym Ed. 2018;29(4):360–350.
  • Oh JK, Drumright R, Siegwart DJ, et al. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33(4):448–477.
  • Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–1649.
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5(4):707–715.
  • Oh JK. Engineering of nanometer-sized cross-linked hydrogels for biomedical applications. Can J Chem. 2010;88(3):173–184.
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl. 2009;48(30):5418–5429.
  • Ghugare SV, Mozetic P, Paradossi G. Temperature-sensitive poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery . Biomacromolecules. 2009;10(6):1589–1596.
  • Jańczewski D, Song J, Csányi E, et al. Organometallic polymeric carriers for redox triggered release of molecular payloads. J Mater Chem. 2012;22(13):6429–6435.
  • Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci. 2019;19(8):1900071.
  • Thornton PD, Mart RJ, Ulijn RV. Enzyme‐Responsive Polymer Hydrogel Particles for Controlled Release. Adv Mater. 2007;19(9):1252–1256.
  • Tibbitt MW, Kloxin AM, Sawicki LA, et al. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules. 2013;46(7):2785–2792.
  • Liu T, Shah PK, Liu Z, et al. Effects of Photodegradable o‐Nitrobenzyl Nanogels on the Photopolymerization Process. Macromol Mater Eng. 2018;303(9):1800206.
  • Kim Y, Pourgholami MH, Morris DL, et al. Triggering the fast release of drugs from crosslinked micelles in an acidic environment. J Mater Chem. 2011;21(34):12777–12783.
  • Engin K, Leeper D, Cater J, et al. Extracellular pH distribution in human tumours. Int J Hyperthermia. 1995;11(2):211–216.
  • Stubbs M, McSheehy PM, Griffiths JR, et al. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000;6(1):15–19.
  • Lee ES, Oh KT, Kim D, et al. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine) ). J Control Release. 2007;123(1):19–26.
  • Ren T-B, Feng Y, Zhang Z-H, et al. Shell-sheddable micelles based on star-shaped poly (ε-caprolactone)-SS-poly (ethyl glycol) copolymer for intracellular drug release. Soft Matter. 2011;7(6):2329–2331.
  • Russo A, DeGraff W, Friedman N, et al. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 1986;46(6):2845–2848.
  • Ali MM, Stöver HD. Well-defined amphiphilic thermosensitive copolymers based on poly (ethylene glycol monomethacrylate) and methyl methacrylate prepared by atom transfer radical polymerization. Macromolecules. 2004;37(14):5219–5227.
  • Oh JK, Siegwart DJ, Lee H-i, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc. 2007;129(18):5939–5945.
  • Tyeklar Z, Jacobson RR, Wei N, et al. Reversible Reaction of O∼ 2 (and CO) with a Copper (I) Complex. X-ray Structures of Relevant Mononuclear Cu (I) Precursor Adducts and the trans- (-1, 2-Peroxo) dicopper (II) Product. J Am Chem Soc. 1993;115(7):2677–2689.,
  • Jung Kwon O, Chuanbing T, Haifeng G, et al. Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. J Am Chem Soc. 2006;128(16):5578–5584.
  • Kishore U, Greenhough TJ, Waters P, et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol. 2006;43(9):1293–1315.
  • Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119(2):203–210.
  • Ar G, Salunke K. A Review on Stimuli-Responsive Polymers and Recent Strategies for Treating Cancer Based on Stimuli Responsive Nanocarriers. Inter J Pharma Bio Sci. 2020;10(3):74–101.
  • Xu J, Ni P, Mao J. Synthesis and Characterization of a Novel Triblock Copolymer Containing Double-hydrophilic Blocks and Poly (fluoroalkyl methacrylate) Block via Oxyanioninitiated Polymerization. e-Polymers. 2006;6(1):195–208.
  • Shim Y-H, Bougard F, Coulembier O, et al. Synthesis and characterization of original 2-(dimethylamino) ethyl methacrylate/poly (ethyleneglycol) star-copolymers. Eur Polym J. 2008;44(11):3715–3723.
  • Siegwart DJ, Oh JK, Gao H, et al. Biotin‐, Pyrene‐, and GRGDS‐Functionalized Polymers and Nanogels via ATRP and End Group Modification. Macromol Chem Phys. 2008;209(21):2179–2193.
  • Qian Y, Zha Y, Feng B, et al. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery . Biomaterials. 2013;34(8):2117–2129.
  • Kumar P, Behl G, Sikka M, et al. Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin . J Biomater Sci Polym Ed. 2016;27(14):1413–1433.
  • Yin JJ, Wahid F, Zhang Q, et al. Facile Incorporation of Silver Nanoparticles into Quaternized Poly (2‐(Dimethylamino) Ethyl Methacrylate) Brushes as Bifunctional Antibacterial Coatings. Macromol Mater Eng. 2017;302(6):1700069.
  • Sahle FF, Giulbudagian M, Bergueiro J, et al. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale. 2017;9(1):172–182.
  • Yao R, Xu J, Lu X, et al. Phase transition behavior of HPMC-AA and preparation of HPMC-PAA nanogels. J Nanomater. 2011;2011:1–6.
  • Wang S, Huang P, Chen X. Stimuli-responsive programmed specific targeting in nanomedicine. Acs Nano. 2016;10(3):2991–2994.
  • Shi F, Ding J, Xiao C, et al. Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. J Mater Chem. 2012;22(28):14168–14179.
  • Meléndez‐Ortiz HI, Peralta RD, Bucio E, et al. Preparation of stimuli‐responsive nanogels of poly [2‐(dimethylamino) ethyl methacrylate] by heterophase and microemulsion polymerization using gamma radiation. Polym Eng Sci. 2014;54(7):1625–1631.
  • Chen W, Zheng M, Meng F, et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromolecules. 2013;14(4):1214–1222.
  • Khorsand B, Lapointe G, Brett C, et al. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules. 2013;14(6):2103–2111.
  • Asadi H, Khoee S. Dual responsive nanogels for intracellular doxorubicin delivery. Int J Pharm. 2016;511(1):424–435.
  • Curcio M, Diaz-Gomez L, Cirillo G, et al. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm. 2017;117:324–332.
  • Kayal S, Ramanujan R. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C. 2010;30(3):484–490.
  • Vigevani A, Williamson MJ. Doxorubicin. In: Klaus Florey, editor. Analytical profiles of drug substances. Vol. 9. Elsevier; 1981. p. 245–274.
  • Jayakumar R, Nair A, Rejinold NS, et al. Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohydr Polym. 2012;87(3):2352–2356.
  • Arunraj T, Rejinold NS, Kumar NA, et al. Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery . Int J Biol Macromol. 2013;62:35–43.
  • Kalaria D, Sharma G, Beniwal V, et al. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;26(3):492–501.
  • Kumar P, Wasim L, Chopra M, et al. Co-delivery of Vorinostat and Etoposide Via Disulfide Cross-Linked Biodegradable Polymeric Nanogels: Synthesis, Characterization, Biodegradation, and Anticancer Activity. AAPS PharmSciTech. 2018;19(2):634–614.
  • Ghamkhari A, Ghorbani M, Aghbolaghi S. A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S911–S21.
  • Yang X, Chen L, Han B, et al. Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers. Polymer. 2010;51(12):2533–2539.
  • Qi J, Yao P, He F, et al. Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery. Int J Pharm. 2010;393(1-2):177–185.
  • Chen J, Dai H, Lin H, et al. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels. Colloids Surf B Biointerfaces. 2016;141:278–283.
  • Wen Y, Oh JK. Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Adv. 2014;4(1):229–237.
  • Bahadur K, Xu P. Multicompartment Intracellular self-expanding nanogel for targeted delivery of drug cocktail . Adv Mater. 2012;24(48):6479–6483.
  • Hong R, Han G, Fernández JM, et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc. 2006;128(4):1078–1079.
  • Koo AN, Lee HJ, Kim SE, et al. Disulfide-cross-linked PEG-poly (amino acid) s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun. 2008;2008(48):6570–6572.
  • Ding J, Shi F, Xiao C, et al. One-step preparation of reduction-responsive poly (ethylene glycol)-poly (amino acid) s nanogels as efficient intracellular drug delivery platforms. Polym Chem. 2011;2(12):2857–2864.
  • Ding J, Xiao C, Yan L, et al. pH and dual redox responsive nanogel based on poly (l-glutamic acid) as potential intracellular drug carrier. J Controlled Release. 2011;152:e11–e13.
  • Liu J, Pang Y, Huang W, et al. Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery. Biomacromolecules. 2011;12(5):1567–1577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.