232
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition

, , &
Pages 419-437 | Received 11 Sep 2020, Accepted 16 Oct 2020, Published online: 06 Nov 2020

References

  • Costa RR, Mano JF. Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev. 2014;43(10):3453–3479.
  • Xia Z, Yu X, Wei M. Biomimetic collagen/apatite coating formation on Ti6Al4V substrates. J Biomed Mater Res B Appl Biomater. 2012;100(3):871–881.
  • Madhurakkat Perikamana SK, Lee J, Lee YB, et al. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules. 2015;16(9):2541–2555.
  • Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir. 2019;35(5):1778–1787.
  • Mosadegh B, Xiong G, Dunham S, et al. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015;10(3):034002.
  • Ricles LM, Coburn JC, Di Prima M, et al. Regulating 3D-printed medical products. Sci Transl Med. 2018;10(461):eaan6521.
  • Bhattacharjee N, Urrios A, Kang S, et al. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720–1742.
  • Oosterom R, Ahmed TJ, Poulis JA, et al. Adhesion performance of UHMWPE after different surface modification techniques. Med Eng Phys. 2006;28(4):323–330.
  • Duta OC, Ţîţu AM, Marin A, et al. Surface modification of poly(vinylchloride) for manufacturing advanced catheters. Curr Med Chem. 2020;27(10):1616–1633.
  • Komagata Y, Ikeda H, Fujio Y, et al. Surface modification of feldspar porcelain by corona discharge and its effect on bonding to resin cement with silane coupling agent. J Mech Behav Biomed Mater. 2020;105:103708.
  • Ahmed IN, Chang R, Keng MC, et al. Immobilization of functional polymers on poly(4-benzoyl-pxylylene-co-p-xylylene) films via photochemical conjugation for modulation of cell adhesion. Colloids Surf B Biointerfaces. 2019;174:360–366.
  • Matsuda T, Sugawara T. Development of surface photochemical modification method for micropatterning of cultured cells. J Biomed Mater Res. 1995;29(6):749–756.
  • Chen SH, Fukazawa K, Inoue Y, et al. Photoinduced surface zwitterionization for antifouling of porous polymer substrates. Langmuir. 2019;35(5):1312–1319.
  • Tanaka M, Iwasaki Y. Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion. Acta Biomater. 2016;40:54–61.
  • Moro T, Takatori Y, Ishihara K, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3(11):829–836.
  • Fukazawa K, Ishihara K. Synthesis of photoreactive phospholipid polymers for use in versatile surface modification of various materials to obtain extreme wettability. ACS Appl Mater Interfaces. 2013;5(15):6832–6836.
  • Fukazawa K, Nakao A, Maeda M, et al. Photoreactive initiator for surface-initiated ATRP on versatile polymeric substrates. ACS Appl Mater Interfaces. 2016;8(38):24994–24998.
  • Goda T, Konno T, Takai M, et al. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials. 2006;27(30):5151–5160.
  • Kyomoto M, Ishihara K. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation. ACS Appl Mater Interfaces. 2009;1(3):537–542.
  • Yang P, Yang W. Surface Chemoselective phototransformation of C-H bonds on organic polymeric materials and related high-tech applications. Chem Rev. 2013;113(7):5547–5594.
  • Konno T, Hasuda H, Ishihara K, et al. Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials. 2005;26(12):1381–1388.
  • Kim SW, Lee TH, Lee YG, et al. Preparation of azidophenyl-low molecular chitosan derivative micro particles for enhance drug delivery. Int J Biol Macromol. 2019;133:875–880.
  • Chien HW, Cheng PH, Chen SY, et al. Low-fouling and functional poly(carboxybetaine) coating via a photo-crosslinking process. Biomater Sci. 2017;5(3):523–531.
  • Ito Y, Nogawa M, Takeda M, et al. Photo-reactive polyvinylalcohol for photo-immobilized microarray. Biomaterials. 2005;26(2):211–216.
  • Lu DR, Lee SJ, Park K. Calculation of solvation interaction energies for protein adsorption on polymer surfaces. J Biomater Sci Polym Ed. 1991;3(2):127–147.
  • Sanfeld A, Royer C, Steinchen A. Thermodynamic, kinetic and conformational analysis of proteins diffusion-sorption on a solid surface. Adv Colloid Interface Sci. 2015;222:639–660.
  • Yano YF. Kinetics of protein unfolding at interfaces. J Phys Condens Matter. 2012;24(50):503101.
  • Rodler A, Ueberbacher R, Beyer B, et al. Calorimetry for studying the adsorption of proteins in hydrophobic interaction chromatography. Prep Biochem Biotechnol. 2019;49(1):1–20.
  • Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res A. 2019;107(5):933–943.
  • Ishihara K, Mu M, Konno T, et al. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed. 2017;28(10-12):884–899.
  • Lin X, Fukazawa K, Ishihara K. Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS Appl Mater Interfaces. 2015;7(31):17489–17498.
  • Liu Q, Locklin J. Transparent grafted zwitterionic copolymer coatings that exhibit both antifogging and self-cleaning properties. ACS Omega. 2018;3(12):17743–17750.
  • Liu Q, Locklin JL. Photocross-linking kinetics study of benzophenone containing zwitterionic copolymers. ACS Omega. 2020;5(16):9204–9211.
  • Münch AS, Adam S, Fritzsche T, et al. Tuning of smart multifunctional polymer coatings made by zwitterionic phosphorylcholines. Adv Mater Interfaces. 2020;7(1):1901422.
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J. 1990;22(5):355–360.
  • Min K, Gao H, Matyjaszewski K. Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules. 2007;40(6):1789–1791.
  • Yusa S-I, Fukuda K, Yamamoto T, et al. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules. 2005;6(2):663–670.
  • Yu B, Lowe AB, Ishihara K. RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy)ethyl phosphorylcholine. Biomacromolecules. 2009;10(4):950–958.
  • Wasserman SP, Tao Y, Whitesides GM. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir. 1989;5(4):1074–1087.
  • Kyomoto M, Moro T, Saiga K, et al. Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage. Biomaterials. 2010;31(4):658–668.
  • Wang JH, Bartlett JD, Dunn AC, et al. The use of rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials. J Microsc. 2005;217(Pt 3):216–224.
  • Ishihara K, Mitera K, Inoue Y, et al. Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids Surf B Biointerfaces. 2020;194:111205.
  • Iwasaki Y, Kurita K, Ishihara K, et al. Effect of reduced protein adsorption on platelet adhesion at the phospholipid polymer surfaces. J Biomater Sci Polym Ed. 1996;8(2):151–163.
  • Rabinow BE, Ding YS, Qin C, et al. Biomaterials with permanent hydrophilic surfaces and low protein adsorption properties. J Biomater Sci Polym Ed. 1994;6(1):91–109.
  • Watanabe J, Ishihara K. Establishing ultimate biointerfaces covered with phosphorylcholine groups. Colloids Surf B Biointerfaces. 2008;65(2):155–165.
  • Porter G, Suppan P. Reactivity of excited states of aromatic ketones. Pure Appl Chem. 1964;9(4):499–505.
  • Braun D, Rabie ST, Khaireldin NY, et al. Preparation and evaluation of some benzophenone terpolymers as photostabilizers for rigid PVC. J Vinyl Addit Technol. 2011;17(3):147–155.
  • Ishihara K, Mu M, Konno T. Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. J Biomater Sci Polym Ed. 2018;29(7-9):844–862.
  • Yoneyama T, Ishihara K, Nakabayashi N, et al. Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend. J Biomed Mater Res. 1998;43(1):15–20.
  • Yoneyama T, Sugihara K, Ishihara K, et al. The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials. 2002;23(6):1455–1459.
  • Hasegawa T, Iwasaki Y, Ishihara K. Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer. J Biomed Mater Res. 2002;63(3):333–341.
  • Han L, Xiang L, Zhang J, et al. Biomimetic lubrication and surface interactions of dopamine-assisted zwitterionic polyelectrolyte coatings. Langmuir. 2018;34(38):11593–11601.
  • Asha AB, Chen Y, Zhang H, et al. Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir. 2019;35(5):1621–1630.
  • Cheng B, Inoue Y, Ishihara K. Surface functionalization of polytetrafluoroethylene substrate with hybrid processes comprising plasma treatment and chemical reactions. Colloids Surf B Biointerfaces. 2019;173:77–84.
  • Ishihara K, Nomura H, Mihara T, et al. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 1998;39(2):323–330.
  • Ishihara K, Ziats NP, Tierney BP, et al. Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res. 1991;25(11):1397–1347.
  • Chen SH, Chang Y, Ishihara K. Reduced blood cell adhesion on polypropylene substrates through a Simple Surface Zwitterionization. Langmuir. 2017;33(2):611–621.
  • Ishihara K, Kozaki Y, Inoue Y, et al. Biomimetic phospholipid polymers for suppressing adsorption of saliva proteins on dental hydroxyapatite substrate. J Appl Polym Sci. 2021;138(6):49812.
  • Feng W, Zhu S, Brash JL, et al. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir. 2005;21(13):5980–5987.
  • Sivaraman B, Latour RA. The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials. 2010;31(5):832–839.
  • Tateishi T, Kyomoto M, Kakinoki S, et al. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. J Biomed Mater Res A. 2014;102(5):1342–1349.
  • Horbett TA. Fibrinogen adsorption to biomaterials. J Biomed Mater Res A. 2018;106(10):2777–2788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.