533
Views
9
CrossRef citations to date
0
Altmetric
Review Article

A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications

ORCID Icon, , &
Pages 906-965 | Received 16 Oct 2020, Accepted 22 Dec 2020, Published online: 27 Jan 2021

References

  • Nady N, Franssen MCR, Zuilhof H, et al. Modification methods for poly(arylsulfone) membranes: a mini-review focusing on surface modification. Desalination. 2011;275(1–3):1–9. doi:10.1016/j.desal.2011.03.010
  • Shariatinia Z, Mohammadi-Denyani A. Advances in polymers for drug delivery and wound healing applications. In: Pathania D, Gupta B, editors. Advances in polymers for biomedical applications. New York (NY): Nova Science Publishers, Inc.; 2016. p. 85.
  • Shariatinia Z, Barzegari A. Polysaccharide hydrogel films/membranes for transdermal delivery of therapeutics. In: Maiti S, Jana S, editors. Polysaccharide carriers for drug delivery. Sawston, Cambridge: Woodhead Publishing; 2019. p. 639–684.
  • Kono H, Teshirogi T. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int J Biol Macromol. 2015;72:299–308. doi:10.1016/j.ijbiomac.2014.08.030
  • Kohsari I, Shariatinia Z, Pourmortazavi SM. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym. 2016;140:287–298. doi:10.1016/j.carbpol.2015.12.075
  • Ghaee A, Karimi M, Lotfi-Sarvestani M, et al. Preparation of hydrophilic polycaprolactone/modified ZIF-8 nanofibers as a wound dressing using hydrophilic surface modifying macromolecules. Mater Sci Eng C Mater Biol Appl. 2019;103:109767. doi:10.1016/j.msec.2019.109767
  • Cheng C, Sun S, Zhao C. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J Mater Chem B. 2014;2(44):7649–7672. doi:10.1039/C4TB01390E
  • Mazloom-Jalali A, Shariatinia Z, Tamai IA, et al. Fabrication of chitosan-polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int J Biol Macromol. 2020;153:421–432. doi:10.1016/j.ijbiomac.2020.03.033
  • Thuyavan YL, Anantharaman N, Arthanareeswaran G, et al. Preparation and characterization of TiO 2 -sulfonated polymer embedded polyetherimide membranes for effective desalination application. Desalination. 2015;365:355–364. doi:10.1016/j.desal.2015.03.004
  • Zhang B, Li L, He G, et al. Imidazolium functionalized polysulfone electrolyte membranes with varied chain structures: a comparative study. RSC Adv. 2016;6(37):31336–31346. doi:10.1039/C6RA01137C
  • Jhaveri JH, Murthy ZVP. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination. 2016;379:137–154. doi:10.1016/j.desal.2015.11.009
  • Ghaee A, Nourmohammadi J, Danesh P. Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydr Polym. 2017;157:695–703. doi:10.1016/j.carbpol.2016.10.023
  • Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol. 2018;14(6):394–410. doi:10.1038/s41581-018-0002-x
  • Fazli Y, Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Mater Sci Eng C Mater Biol Appl. 2017;71:641–652. doi:10.1016/j.msec.2016.10.048
  • Mazloom-Jalali A, Shariatinia Z. Polycaprolactone nanocomposite systems used to deliver ifosfamide anticancer drug: molecular dynamics simulations. Struct Chem. 2019;30(3):863–876. doi:10.1007/s11224-018-1233-y
  • Fazli Y, Shariatinia Z, Kohsari I, et al. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs. Int J Pharm. 2016;513(1-2):636–647. doi:10.1016/j.ijpharm.2016.09.078
  • Kalra S, McBryde CW, Lawrence T. Intracapsular hip fractures in end-stage renal failure. Injury. 2006;37(2):175–184. doi:10.1016/j.injury.2005.11.006
  • Ahmad S. Manual of clinical dialysis. Boston (MA): Springer US; 2009.
  • Yu X, Shen L, Zhu Y, et al. High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. J Memb Sci. 2017;523:173–184. doi:10.1016/j.memsci.2016.09.057
  • Nie C, Ma L, Xia Y, et al. Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. J Memb Sci. 2015;475:455–468. doi:10.1016/j.memsci.2014.11.005
  • Weinman ST, Bass M, Pandit S, et al. A switchable zwitterionic membrane surface chemistry for biofouling control. J Memb Sci. 2018;548:490–501. doi:10.1016/j.memsci.2017.11.055
  • Irfan M, Idris A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques. Mater Sci Eng C Mater Biol Appl. 2015;56:574–592. doi:10.1016/j.msec.2015.06.035
  • Arahman N, Maulidayanti S, Putri AO. The stability of poly(ether sulfone) membranes treated in hot water and hypochlorite solution. Procedia Chem. 2015;16:709–715. doi:10.1016/j.proche.2015.12.017
  • Hoseinpour V, Ghaee A, Vatanpour V, et al. Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr Polym. 2018;188:37–47. doi:10.1016/j.carbpol.2018.01.106
  • Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. J Appl Polym Sci. 2009;114(1):630–642. doi:10.1002/app.30578
  • Garcia-Ivars J, Iborra-Clar MI, Alcaina-Miranda MI, et al. Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes. J Memb Sci. 2015;493:709–722. doi:10.1016/j.memsci.2015.07.009
  • Jamshidi Gohari R, Lau WJ, Matsuura T, et al. Fabrication and characterization of novel PES/Fe–Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Sep. Purif. Technol. 2013;118:64–72. doi:10.1016/j.seppur.2013.06.043
  • Nasrollahi N, Vatanpour V, Aber S, et al. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep Purif Technol. 2018;192:369–382. doi:10.1016/j.seppur.2017.10.034
  • Zhao C, Xue J, Ran F, et al. Modification of polyethersulfone membranes – a review of methods. Prog Mater Sci. 2013;58(1):76–150. doi:10.1016/j.pmatsci.2012.07.002
  • Salimi E, Ghaee A, Ismail AF. Improving blood compatibility of polyethersulfone hollow fiber membranes via blending with sulfonated polyether ether ketone. Macromol Mater Eng. 2016;301(9):1084–1095. doi:10.1002/mame.201600108
  • Li S-S, Xie Y, Xiang T, et al. Heparin-mimicking polyethersulfone membranes – hemocompatibility, cytocompatibility, antifouling and antibacterial properties. J Memb Sci. 2016;498:135–146. doi:10.1016/j.memsci.2015.09.054
  • Vatanparast M, Shariatinia Z. Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: insights from DFT calculations and molecular dynamics simulations. J Mol Graph Model. 2019;89:50–59. doi:10.1016/j.jmgm.2019.02.012
  • Vatanparast M, Shariatinia Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: a combined density functional theory and molecular dynamics approach. J Mater Chem B. 2019;7(40):6156–6171. doi:10.1039/C9TB00971J
  • Kohsari I, Shariatinia Z, Pourmortazavi SM. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. Int J Biol Macromol. 2016;91:778–788. doi:10.1016/j.ijbiomac.2016.06.039
  • Shariatinia Z, Nikfar Z, Gholivand K, et al. Antibacterial activities of novel nanocomposite biofilms of chitosan/phosphoramide/Ag NPs. Polym Compos. 2015;36(3):454–466. doi:10.1002/pc.22960
  • Vatanparast M, Shariatinia Z. AlN and AlP doped graphene quantum dots as novel drug delivery systems for 5-fluorouracil drug: theoretical studies. J Fluor Chem. 2018;211:81–93. doi:10.1016/j.jfluchem.2018.04.003
  • Nikfar Z, Shariatinia Z. Phosphate functionalized (4,4)-armchair CNTs as novel drug delivery systems for alendronate and etidronate anti-osteoporosis drugs. J Mol Graph Model. 2017;76:86–105. doi:10.1016/j.jmgm.2017.06.021
  • Nikfar Z, Shariatinia Z. DFT computational study on the phosphate functionalized SWCNTs as efficient drug delivery systems for anti-osteoporosis zolendronate and risedronate drugs, Phys. E Low-Dimensional Syst. Nanostructures. 2017;91:41–59.
  • Vatanparast M, Shariatinia Z. Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Struct Chem. 2018;29(5):1427–1448. doi:10.1007/s11224-018-1129-x
  • Shariatinia Z, Nikfar Z. Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs. Int J Biol Macromol. 2013;60:226–234. doi:10.1016/j.ijbiomac.2013.05.026
  • Shariatinia Z, Zahraee Z. Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J Colloid Interface Sci. 2017;501:60–76. doi:10.1016/j.jcis.2017.04.036
  • Hoseinpour V, Souri M, Ghaemi N. Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles. Micro Nano Lett. 2018;13(11):1560–1563. doi:10.1049/mnl.2018.5008
  • Souri M, Hoseinpour V, Shakeri A, et al. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol. 2018;12(6):822–827. doi:10.1049/iet-nbt.2017.0145
  • Hoseinpour V, Ghaemi N. Green synthesis of manganese nanoparticles: applications and future perspective-a review. J Photochem Photobiol B. 2018;189:234–243. doi:10.1016/j.jphotobiol.2018.10.022
  • Hoseinpour V, Ghaemi N. Novel ZnO–MnO 2 –Cu 2 O triple nanocomposite: facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation-A comparative study. Mater Res Express. 2018;5(8):085012. doi:10.1088/2053-1591/aad2c6
  • Hoseinpour V, Souri M, Ghaemi N, et al. Optimization of green synthesis of ZnO nanoparticles by Dittrichia graveolens (L.) aqueous extract. Heal Biotechnol Biopharma. 2017;1:39–49.
  • Souri M, Hoseinpour V, Ghaemi N, et al. Procedure optimization for green synthesis of manganese dioxide nanoparticles by Yucca gloriosa leaf extract. Int Nano Lett. 2019;9(1):73–81. doi:10.1007/s40089-018-0257-z
  • Zinadini S, Rostami S, Vatanpour V, et al. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Memb. Sci. 2017;529:133–141. doi:10.1016/j.memsci.2017.01.047
  • Mahlangu OT, Nackaerts R, Thwala JM, et al. Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation. J Memb Sci. 2017;524:43–55. doi:10.1016/j.memsci.2016.11.018
  • Amani H, Arzaghi H, Bayandori M, et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces. 2019;6(13):1900572. doi:10.1002/admi.201900572
  • Safarpour M, Vatanpour V, Khataee A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination. 2016;393:65–78. doi:10.1016/j.desal.2015.07.003
  • Zhan X, Zhang G, Chen X, et al. Improvement of antifouling and antibacterial properties of poly(ether sulfone) UF membrane by blending with a multifunctional comb copolymer. Ind Eng Chem Res. 2015;54(45):11312–11318. doi:10.1021/acs.iecr.5b03416
  • Shariatinia Z, Shahidi S. A DFT study on the physical adsorption of cyclophosphamide derivatives on the surface of fullerene C60 nanocage. J Mol Graph Model. 2014;52:71–81. doi:10.1016/j.jmgm.2014.06.001
  • Zhao S, Yan W, Shi M, et al. Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J Memb Sci. 2015;478:105–116. doi:10.1016/j.memsci.2014.12.050
  • Wang Y, Zhu J, Dong G, et al. Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Sep Purif Technol. 2015;150:243–251. doi:10.1016/j.seppur.2015.07.005
  • Fang X, Li J, Li X, et al. Polyethyleneimine, an effective additive for polyethersulfone ultrafiltration membrane with enhanced permeability and selectivity. J Memb Sci. 2015;476:216–223. doi:10.1016/j.memsci.2014.11.021
  • Zhu L, Song H, Wang J, et al. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization. Mater Sci Eng C Mater Biol Appl. 2017;74:159–166. doi:10.1016/j.msec.2017.02.019
  • Zhang W, Yang Z, Kaufman Y, et al. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. J Colloid Interface Sci. 2018;517:155–165. doi:10.1016/j.jcis.2018.01.106
  • Nikita K, Ray D, Aswal VK, et al. Surface modification of functionalized multiwalled carbon nanotubes containing mixed matrix membrane using click chemistry. J Memb Sci. 2020;596:117710. doi:10.1016/j.memsci.2019.117710
  • Wang J-J, Wu M-B, Xiang T, et al. Antifouling and blood-compatible poly(ether sulfone) membranes modified by zwitterionic copolymers via In situ crosslinked copolymerization. J Appl Polym Sci. 2015;132(10):n/a–n/a.
  • Xie Y, Chen L, Zhang X, et al. Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. J Colloid Interface Sci. 2018;510:308–317. doi:10.1016/j.jcis.2017.09.071
  • Ahmad AL, Abdulkarim AA, Ooi BS, et al. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J. 2013;223:246–267. doi:10.1016/j.cej.2013.02.130
  • Rambabu K, Velu S. Modified polyethersulfone ultrafiltration membrane for the treatment of tannery wastewater. Int J Environ Stud. 2016;73(5):819–826. doi:10.1080/00207233.2016.1153900
  • Jamshidi Gohari R, Halakoo E, Nazri NAM, et al. Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination. 2014;335(1):87–95. doi:10.1016/j.desal.2013.12.011
  • Shariatinia Z, Jalali AM. Chitosan-based hydrogels: preparation, properties and applications. Int J Biol Macromol. 2018;115:194–220. doi:10.1016/j.ijbiomac.2018.04.034
  • Shariatinia Z, Mazloom-Jalali A. Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J Mol Liq. 2019;273:346–367. doi:10.1016/j.molliq.2018.10.047
  • Shariatinia Z, Fazli M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll. 2015;46:112–124. doi:10.1016/j.foodhyd.2014.12.026
  • Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131–194. doi:10.1016/j.cis.2018.11.008
  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–347. doi:10.1016/j.biotechadv.2010.01.004
  • Shariatinia Z. Pharmaceutical Applications of natural polysaccharides. In: Saquib Hasnain Md, Nayak AM, editors. Natural polysaccharides in drug delivery and biomedical applications. Sawston, Cambridge: Academic Press; 2019. pp. 15–57.
  • Shariatinia Z, Fasihozaman-Langroodi K. Biodegradable polymer nanobiocomposite packaging materials. In: Grumezescu AM, Holban AM, editors. Trends in beverage packaging. Sawston, Cambridge: Academic Press; 2019. pp. 191–241.
  • Nikfar Z, Shariatinia Z. The RGD tripeptide anticancer drug carrier: DFT computations and molecular dynamics simulations. J Mol Liq. 2019;281:565–583. doi:10.1016/j.molliq.2019.02.114
  • Ji M, Chen X, Luo J, et al. Improved blood compatibility of polysulfone membrane by anticoagulant protein immobilization. Colloids Surf B Biointerfaces. 2019;175:586–595. doi:10.1016/j.colsurfb.2018.12.026
  • Wang L, Cai Y, Jing Y, et al. Route to hemocompatible polyethersulfone membranes via surface aminolysis and heparinization. J Colloid Interface Sci. 2014;422:38–44.,. doi:10.1016/j.jcis.2014.02.005
  • Xie Y, Li S-S, Jiang X, et al. Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility. J Colloid Interface Sci. 2015;443:36–44. doi:10.1016/j.jcis.2014.11.053
  • Roy A, Dadhich P, Dhara S, et al. In vitro cytocompatibility and blood compatibility of polysulfone blend, surface-modified polysulfone and polyacrylonitrile membranes for hemodialysis. RSC Adv. 2015;5(10):7023–7034. doi:10.1039/C4RA13460E
  • Li Q, Imbrogno J, Belfort G, et al. Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions. J Appl Polym Sci. 2015;132(21):n/a–n/a.
  • Angione MD, Duff T, Bell AP, et al. Enhanced antifouling properties of carbohydrate coated poly(ether sulfone) membranes. ACS Appl Mater Interfaces. 2015;7(31):17238–17246. doi:10.1021/acsami.5b04201
  • Higuchi A, Hashiba H, Hayashi R, et al. Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes. J Biomater Sci Polym Ed. 2004;15(8):1051–1063. doi:10.1163/1568562041526504
  • Huang X-J, Guduru D, Xu Z-K, et al. Blood compatibility and permeability of heparin-modified polysulfone as potential membrane for simultaneous hemodialysis and LDL removal. Macromol Biosci. 2011;11(1):131–140. doi:10.1002/mabi.201000278
  • Yue W-W, Li H-J, Xiang T, et al. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Memb Sci. 2013;446:79–91. doi:10.1016/j.memsci.2013.06.029
  • Xiang T, Zhang LS, Wang R, et al. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. J Colloid Interface Sci. 2014;432:47–56. doi:10.1016/j.jcis.2014.06.044
  • Zhao YF, Bin Zhang P, Sun J, et al. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. J Colloid Interface Sci. 2015;448:380–388. doi:10.1016/j.jcis.2015.01.084
  • Xiang T, Lu T, Xie Y, et al. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomater. 2016;40:162–171. doi:10.1016/j.actbio.2016.03.044
  • Yang L. Grafting of poly (cysteine methacrylate) brush from polysulfone membrane via surface-initiated ATRP and their anti-protein fouling property. JFBI. 2017;10(4):231–237. doi:10.3993/jfbim00277
  • Zheng J, Bragg W, Hou J, et al. Sulfated and sulfonated polysaccharide as chiral stationary phases for capillary electrochromatography and capillary electrochromatography-mass spectrometry. J Chromatogr A. 2009;1216(5):857–872. doi:10.1016/j.chroma.2008.11.082
  • Li B, Yu B, Huck WTS, et al. Electrochemically induced surface-initiated atom-transfer radical polymerization. Angew Chem Int Ed Engl. 2012;51(21):5092–5095. doi:10.1002/anie.201201533
  • Li B, Yu B, Huck WTS, et al. Electrochemically mediated atom transfer radical polymerization on nonconducting substrates: controlled brush growth through catalyst diffusion. J Am Chem Soc. 2013;135(5):1708–1710. doi:10.1021/ja3116197
  • Ran F, Wu J, Niu X, et al. A new approach for membrane modification based on electrochemically mediated living polymerization and self-assembly of N-tert-butyl amide- and β-cyclodextrin-involved macromolecules for blood purification. Mater Sci Eng C Mater Biol Appl. 2019;95:122–133. doi:10.1016/j.msec.2018.10.075
  • Xie Y, Wang R, Li S, et al. A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane. Colloids Surf B Biointerfaces. 2016;146:326–333. doi:10.1016/j.colsurfb.2016.06.036
  • Goushki MN, Mousavi SA, Abdekhodaie MJ, et al. Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties. J Memb Sci. 2018;564:762–772. doi:10.1016/j.memsci.2018.07.071
  • Tu MM, Xu JJ, Qiu YR. Surface hemocompatible modification of polysulfone membrane: Via covalently grafting acrylic acid and sulfonated hydroxypropyl chitosan. RSC Adv. 2019;9(11):6254–6266. doi:10.1039/C8RA10573A
  • Lan P, Xu Z-KK, Ji J, et al. Covalent heparin modification of a polysulfone flat sheet membrane for selective removal of low-density lipoproteins: a simple and versatile method. Macromol Biosci. 2011;11(9):1218–1226.
  • Wang W, Zheng Z, Huang X, et al. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification. J Biomed Mater Res B Appl Biomater. 2017;105(7):1737–1746. doi:10.1002/jbm.b.33709
  • Zhao C, Liu X, Rikimaru S, et al. Surface characterization of polysulfone membranes modified by DNA immobilization. J Memb Sci. 2003;214(2):179–189.,. doi:10.1016/S0376-7388(02)00524-0
  • Sperling C, Houska M, Brynda E, et al. In vitro hemocompatibility of albumin-heparin multilayer coatings on polyethersulfone prepared by the layer-by-layer technique. J Biomed Mater Res A. 2006;76(4):681–689.
  • Xiang T, Wang R, Zhao W-F, et al. Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane. Langmuir. 2014;30(18):5115–5125. doi:10.1021/la5001705
  • Wang L, Su B, Cheng C, et al. Layer by layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. J Mater Chem B. 2015;3(7):1391–1404. doi:10.1039/C4TB01865F
  • Yang H-C, Luo J, Lv Y, et al. Surface engineering of polymer membranes via mussel-inspired chemistry. J Memb Sci. 2015;483:42–59. doi:10.1016/j.memsci.2015.02.027
  • Cheng C, Li S, Zhao W, et al. The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. J Memb Sci. 2012;417-418:228–236. doi:10.1016/j.memsci.2012.06.045
  • Ma L, Qin H, Cheng C, et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. J Mater Chem B. 2014;2(4):363–375. doi:10.1039/C3TB21388A
  • Xu C, Liu X, Xie B, et al. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces. Appl Surf Sci. 2016;385:130–138. doi:10.1016/j.apsusc.2016.05.084
  • Chang Y, Chang W-J, Shih Y-J, et al. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces. 2011;3(4):1228–1237. doi:10.1021/am200055k
  • Niu X, Li D, Chen Y, et al. Modification of a polyethersulfone membrane with a block copolymer brush of poly(2-methacryloyloxyethyl phosphorylcholine- co -glycidyl methacrylate) and a branched polypeptide chain of Arg–Glu–Asp–Val. RSC Adv. 2019;9(44):25274–25284. doi:10.1039/C9RA04234B
  • Zhao YF, Zhu LP, Yi Z, et al. Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J Memb Sci. 2013;440:40–47. doi:10.1016/j.memsci.2013.03.064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.