158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

First-in-Man trial of a drug-free bioresorbable stent designed to minimize the duration of coronary artery scaffolding

, , , , , & show all
Pages 1251-1266 | Received 25 Oct 2020, Accepted 24 Mar 2021, Published online: 21 Apr 2021

References

  • Nishio S, Kosuga K, Igaki K, et al. Long-term (>10 years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki–Tamai stents. Circulation. 2012;125(19):2343–2353.
  • Lafont A, Mensah-Gourmel J. Bioresorbable coronary scaffolds should disappear faster. Lancet. 2016;387(10025):1275–1276.
  • Katagiri Y, Stone GW, Onuma Y, et al. State of the art: the inception, advent and future of fully bioresorbable scaffolds. EuroIntervention. 2017;13(6):734–750.
  • Vert M, Chen J, Hellwich K-H, et al. Nomenclature and terminology for linear lactic acid-based polymers (IUPAC Recommendations 2019). Pure Appl Chem. 2020;92(1):193–211.
  • Vert M. After soft tissues, bone, drug delivery and packaging, PLA aims at blood. Eur Polym J. 2015;68:516–525.
  • Moriyama N, Shishido K, Tanaka Y, et al. Neoatherosclerosis 5 years after bioresorbable vascular scaffold implantation. J Am Coll Cardiol. 2018;71(17):1882–1893.
  • Lafont A, Mennuni MG. Effect on death of scaffold thrombosis versus stent thrombosis. Lancet. 2016;387(10034):2198.
  • Ali ZA, Gao R, Kimura T, et al. Three-year outcomes with the absorb bioresorbable scaffold: individual-patient-data meta-analysis from the ABSORB randomized trials. Circulation. 2018;137(5):464–479.
  • Haude M, Ince H, Kische S, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention. 2017;13(4):432–439.
  • Yang H, Zhang F, Qian J, et al. Restenosis in Magmaris stents due to significant collapse. JACC Cardiovasc Interv. 2018;11(10):e77–e78.
  • Katagiri Y, Serruys PW, Asano T, et al. How does the failure of absorb apply to the other bioresorbable scaffolds? An expert review of First-in-Man and pivotal trials. EuroIntervention. 2019;15(1):116–123.
  • Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable scaffold: the emerging reality and future directions. Circ Res. 2017;120(8):1341–1352.
  • Lafont A, Li S, Garreau H, et al. PLA stereocopolymers as sources of bioresorbable stents: preliminary investigation in rabbit. J Biomed Mater Res B Appl Biomater. 2006;77(2):349–356.
  • Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol. 1988;12(3):616–623.
  • Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation. 1988;77(2):361–371.
  • Durand E, Sharkawi T, Leclerc G, et al. Head-to-head comparison of a drug-free early programmed dismantling polylactic acid bioresorbable scaffold and a metallic stent in the porcine coronary artery: six-month angiography and optical coherence tomographic follow-up study. Circ Cardiovasc Interv. 2014;7(1):70–79.
  • Schwach G, Coudane J, Engel R, et al. Zn lactate as initiator of dl-lactide ring opening polymerization and comparison with Sn octoate. Polym Bull. 1996;37(6):771–776.
  • Yahagi K, Yang Y, Torii S, et al. Comparison of a drug-free early programmed dismantling PDLLA bioresorbable scaffold and a metallic stent in a porcine coronary artery model at 3-year follow-up. J Am Heart Assoc. 2017; 6:e005693.
  • Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–2619.
  • Popma JJ, Leon MB, Moses JW, et al. Quantitative assessment of angiographic restenosis after sirolimus-eluting stent implantation in native coronary arteries. Circulation. 2004;110(25):3773–3780.
  • Ormiston JA, Serruys PW, Onuma Y, et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv. 2012;5(5):620–632.
  • Gutierrez-Chico JL, Regar E, Nuesch E, et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography. Circulation. 2011;124(5):612–623.
  • Otsuka M, Tanimoto S, Sianos G, et al. “Radio-lucent” and “radio-opaque” coronary stents characterized by multislice computed tomography. Int J Cardiol. 2009;132(1):e8–e10.
  • Asami M, Aoki J, Serruys PW, et al. Feasibility of 320-row multi-detector computed tomography angiography to assess bioabsorbable everolimus-eluting vascular scaffolds. Cardiovasc Interv Ther. 2016;31(2):96–100.
  • Boogers MJ, Broersen A, van Velzen JE, et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J. 2012;33(8):1007–1016.
  • Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907.
  • Verheye S, Ormiston JA, Stewart J, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv. 2014;7(1):89–99.
  • Vert M, Lafont A. Lactic acid-based polymers in depth. In: Onuma Y, Serrueys PWJC, editors. Bioresorbable scaffolds: from basic concept to clinical applications. London, New York: CRC Press Taylor & Francis Group; 2017. p. 15–21.
  • Lafont A, Guzman LA, Whitlow PL, et al. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling. Circ Res. 1995;76(6):996–1002.
  • Ormiston JA, Stewart FM, Roche AH, et al. Late regression of the dilated site after coronary angioplasty: a 5-year quantitative angiographic study. Circulation. 1997;96(2):468–474.
  • Schatz RA, Baim DS, Leon M, et al. Clinical experience with the Palmaz–Schatz coronary stent. Initial results of a multicenter study. Circulation. 1991;83(1):148–161.
  • Marynissen T, McCutcheon K, Bennett J. Early collapse causing stenosis in a resorbable magnesium scaffold. Catheter Cardiovasc Interv. 2018;92(2):310–312.
  • Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–2491.
  • Serruys PW, Onuma Y, Ormiston JA, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation. 2010;122(22):2301–2312.
  • Onuma Y, Collet C, van Geuns RJ, ABSORB Investigators, et al. A. Investigators, Long-term serial non-invasive multislice computed tomography angiography with functional evaluation after coronary implantation of a bioresorbable everolimus-eluting scaffold: the ABSORB cohort B MSCT substudy. Eur Heart J Cardiovasc Imaging. 2017;18(8):870–879.
  • Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016; 387(10018):537–544.
  • Stone GW, Gao R, Kimura T, Kereiakes DJ, Ellis SG, Onuma Y, Cheong WF, Jones-McMeans J, Su X, Zhang Z, Serruys PW. 1-year outcomes with the absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–1289.
  • Garcia-Garcia HM, McFadden EP, Farb A, Academic Research Consortium, et al. Standardized end point definitions for coronary intervention trials: the academic research consortium-2 consensus document. Circulation. 2018;137(24):2635–2650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.