380
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hydroxyapatite-collagen nanoparticles reinforced polyanhydride based injectable paste for bone substitution: effect of dopant addition in vitro

, , , ORCID Icon &
Pages 1312-1336 | Received 28 Jan 2021, Accepted 11 Apr 2021, Published online: 01 Jun 2021

References

  • Office of the Surgeon General (US). Bone health and osteoporosis: a report of the Surgeon General; 2004.
  • Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci: Mater Med. 2014;25(10):2445–2461.
  • Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, et al. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J Mater Chem. 2010;20(40):8747–8759.
  • Lenaghan SC, Serpersu K, Xia L, et al. A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering. Bioinspir Biomim. 2011;6(4):046009.
  • Shen E, Kipper MJ, Dziadul B, et al. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides. J Control Release. 2002;82(1):115–125.
  • Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–2346.
  • Christel P, Li SM, Vert M, et al. Bone prosthesis material containing calcium carbonate particles dispersed in a bioresorbable polymer matrix. U.S. patent no. 5,433,751. 1995 Jul 18.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:1–14.
  • Maji K, Dasgupta S, Kundu B, et al. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J Biomater Sci Polym Ed. 2015;26(16):1190–1209.
  • Soares JS, Moore JE, Jr, Rajagopal KR. Constitutive framework for biodegradable polymers with applications to biodegradable stents. Asaio J. 2008;54(3):295–301.
  • Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–5724.
  • Betty T, Gullotti D, Mangraviti A, et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016;107:163–175.
  • Luckachan GE, Pillai CKS. Biodegradable polymers – a review on recent trends and emerging perspectives. J Polym Environ. 2011;19(3):637–676.
  • Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48(1):263–277.
  • Ghadi R, Muntimadugu E, Domb AJ, et al. Synthetic biodegradable medical polymer: polyanhydrides. In: Xiang Zhang, editor. Science and principles of biodegradable and bioresorbable medical polymers. Waltham (MA): Woodhead Publishing; 2017. p. 153–188.
  • Muggli DS, Burkoth AK, Anseth KS. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res. 1999;46(2):271–278.
  • Burkoth AK, Anseth KS. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials. 2000;21(23):2395–2404.
  • Hajiali F, Saeid T, Akbar S. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev. 2018;58(1):164–207.
  • Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, et al. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3(2–4):61–102.
  • Lei N, Chen D, Fu J, et al. Macroporous biphasic calcium phosphate scaffolds reinforced by poly-l-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration. Biochem Eng J. 2015;98:29–37.
  • Zhang H, Fu Q-W, Sun T-W, et al. Amorphous calcium phosphate, hydroxyapatite and poly(d,l-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf B. 2015;136:27–36.
  • Shim K-S, Kim SE, Yun Y-P, et al. Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly (caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration. J Ind Eng Chem. 2017;55:101–109.
  • Bissoyi A, Pramanik K. Role of the apoptosis pathway in cryopreservation-induced cell death in mesenchymal stem cells derived from umbilical cord blood. Biopreserv Biobank. 2014;12(4):246–254.
  • Ran J, Jiang P, Sun G, et al. Comparisons among Mg, Zn, Sr, and Si doped nano-hydroxyapatite/chitosan composites for load-bearing bone tissue engineering applications. Mater Chem Front. 2017;1(5):900–910.
  • Demirel M, Kaya AI. Effect of strontium-containing compounds on bone grafts. J Mater Sci. 2020;14:1–25.
  • Götz W, Tobiasch E, Witzleben S, et al. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics. 2019;11(3):117.
  • Qiao H, Song G, Huang Y, et al. Ag co-doped hydroxyapatite/TiO2 coating: enhancement of its antibacterial activity and osteoinductivity. RSC Adv. 2019;9(24):13348–13364.
  • Tomoaia G, Soritau O, Tomoaia-Cotisel M, et al. Scaffolds made of nanostructured phosphates, collagen and chitosan for cell culture. Powder Technol. 2013;238:99–107.
  • Tomoaia G, Mocanu A, Vida-Simiti I, et al. Silicon effect on the composition and structure of nanocalcium phosphates: in vitro biocompatibility to human osteoblasts. Mater Sci Eng C. 2014;37:37–47.
  • Costa-Rodrigues J, Reis S, Castro A, et al. Bone anabolic effects of soluble Si: in vitro studies with human mesenchymal stem cells and CD14+ osteoclast precursors. Stem Cells Int. 2016;2016:1–12.
  • Rapuntean S, Frangopol PT, Hodisan I, et al. In vitro response of human osteoblasts cultured on strontium substituted hydroxyapatites. Rev Chim. 2018;69(12):1–20.
  • Yang F, Yang D, Tu J, et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981–991.
  • Gao C, Peng S, Feng P, et al. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5(1):1–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.