394
Views
1
CrossRef citations to date
0
Altmetric
Research Article

PVP Surface-protected silica coated iron oxide nanoparticles for MR imaging application

ORCID Icon, ORCID Icon, &
Pages 1356-1369 | Received 18 Feb 2021, Accepted 11 Apr 2021, Published online: 16 Jun 2021

References

  • Scialabba C, Puleio R, Peddis D, et al. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017;10(9):3212–3227.
  • Demeritte T, Viraka Nellore BP, Kanchanapally R, et al. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl Mater Interfaces. 2015;7(24):13693–13700.
  • Xu H, Aguilar ZP, Yang L, et al. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials. 2011;32(36):9758–9765.
  • Scialabba C, Licciardi M, Mauro N, et al. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur J Pharm Biopharm. 2014;88(3):695–705.
  • Shen L, Li B, Qiao Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials. 2018;11(2):324.
  • Sadighian S, Rostamizadeh K, Hosseini M-J, et al. Magnetic nanogels as dual triggered anticancer drug delivery: toxicity evaluation on isolated rat liver mitochondria. Toxicol Lett. 2017;278:18–29.
  • Sadighian S, Bayat N, Najaflou S, et al. Preparation of graphene oxide/Fe3O4 nanocomposite as a potential magnetic nanocarrier and MRI contrast agent. ChemistrySelect. 2021;6(12):2862–2868.
  • Peng S, Wang Q, Xiao X, et al. Redox‐responsive polyethyleneimine‐coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym Int. 2020;69(2):206–214.
  • Aguilera G, Berry CC, West RM, et al. Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier. Nanoscale Adv. 2019;1(2):671–685.
  • Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res. 2015;48(5):1276–1285.
  • Sadighian S, Abbasi M, Arjmandi S, et al. Dye removal from water by zinc ferrite-graphene oxide nanocomposite. Prog Color, Colorants Coat. 2018;11(2):85–92.
  • Amstad E, Textor M, Reimhult E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale. 2011;3(7):2819–2843.
  • Park YC, Smith JB, Pham T, et al. Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids Surf, B. 2014;119:106–114.
  • Santiago-Rodríguez L, Lafontaine MM, Castro C, et al. Synthesis, stability, cellular uptake, and blood circulation time of carboxymethyl-inulin coated magnetic nanoparticles. J Mater Chem B. 2013;1(22):2807–2817.
  • Karami Z, Sadighian S, Rostamizadeh K, et al. Magnetic brain targeting of naproxen-loaded polymeric micelles: pharmacokinetics and biodistribution study. Mater Sci Eng. 2019;100:771–780.
  • Chen W, Yi P, Zhang Y, et al. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl Mater Interfaces. 2011;3(10):4085–4091.
  • Hong R, Feng B, Chen L, et al. Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J. 2008;42(3):290–300.
  • Kermanian M, Naghibi M, Sadighian S. One-pot hydrothermal synthesis of a magnetic hydroxyapatite nanocomposite for MR imaging and pH-Sensitive drug delivery applications. Heliyon. 2020;6(9):e04928.
  • Aval NA, Islamian JP, Hatamian M, et al. Doxorubicin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment. Int J Pharm. 2016;509(1-2):159–167.
  • Xu Y-J, Dong L, Lu Y, et al. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale. 2016;8(3):1684–1690.
  • Luo Y, Yang J, Yan Y, et al. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T 1-weighted MR imaging of gliomas. Nanoscale. 2015;7(34):14538–14546.
  • Charoensuk T, Sirisathitkul C, Boonyang U, et al. In vitro bioactivity and stem cells attachment of three-dimensionally ordered macroporous bioactive glass incorporating iron oxides. J Non-Cryst Solids. 2016;452:62–73.
  • Ashokan A, Somasundaram VH, Gowd GS, et al. Biomineral nano-theranostic agent for magnetic resonance image guided, augmented radiofrequency ablation of liver tumor. Sci Rep. 2017;7(1):1–15.
  • Ye F, Laurent S, Fornara A, et al. Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol Imag. 2012;7(5):460–468.
  • Basu P, De K, Das S, et al. Silica‐Coated metal oxide nanoparticles: magnetic and cytotoxicity studies. ChemistrySelect. 2018;3(25):7346–7353.
  • Zhang Q, Zhang T, Ge J, et al. Permeable silica shell through surface-protected etching. Nano Lett. 2008;8(9):2867–2871.
  • Hu Y, Zhang Q, Goebl J, et al. Control over the permeation of silica nanoshells by surface-protected etching with water. Phys Chem Chem Phys. 2010;12(38):11836–11842.
  • Shi Y-L, Asefa T. Tailored core − shell − shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells. Langmuir. 2007;23(18):9455–9462.
  • Zhang Q, Lee I, Ge J, et al. Surface‐Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts. Adv Funct Mater. 2010;20(14):2201–2214.
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–10689.
  • Frydrychowicz A, Lubner MG, Brown JJ, et al. Hepatobiliary MR imaging with gadolinium‐based contrast agents. J Magn Reson Imaging. 2012;35(3):492–511.
  • Loving GS, Mukherjee S, Caravan P. Redox-activated manganese-based MR contrast agent. J Amer Chem Soc. 2013;135(12):4620–4623.
  • Lu J, Ma S, Sun J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials. 2009;30(15):2919–2928.
  • Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 2006;35(6):512–523.
  • Lee N, Choi Y, Lee Y, et al. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 2012;12(6):3127–3131.
  • Penfield JG, Reilly RF. What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol. 2007;3(12):654–668.
  • Aschner M, Guilarte TR, Schneider JS, et al. Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol. 2007;221(2):131–147.
  • Levy M, Luciani N, Alloyeau D, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32(16):3988–3999.
  • Sadighian S, Hosseini-Monfared H, Rostamizadeh K, et al. pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv Pharmaceut Bullet. 2015;5(1):115.
  • Gong C, Wang C, Wang Y, et al. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale. 2012;4(10):3095–3104.
  • Jaganathan H, Godin B. Biocompatibility assessment of Si-based nano-and micro-particles. Adv Drug Delivery Rev. 2012;64(15):1800–1819.
  • Karimzadeh I, Aghazadeh M, Ganjali MR, et al. Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. J Magn Magn Mater. 2017;433:148–154.
  • Asab G, Zereffa EA, Abdo Seghne T. Synthesis of silica-coated fe3o4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity. Int J Biomater. 2020;2020
  • Kermanian M, Sadighian S, Ramazani A, et al. A novel mesoporous superparamagnetic hybrid silica/hydroxyapatite nanocomposite as MRI contrast agent. ChemNanoMat. 2021; 7:284–291.
  • Saegusa T, editor. Organic/inorganic polymer hybrids. Macromolecular Symposia. 1995.
  • Sanaeishoar H, Sabbaghan M, Mohave F. Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Microporous Mesoporous Mater. 2015;217:219–224.
  • Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319–2331.
  • Afzal S, Khan R, Zeb T, et al. Structural, optical, dielectric and magnetic properties of PVP coated magnetite (Fe3O4) nanoparticles. J Mater Sci: Mater Electron. 2018;29(23):20040–20050.
  • Timin AS, Solomonov AV, Musabirov II, et al. Immobilization of bovine serum albumin onto porous poly (vinylpyrrolidone)-modified silicas. Ind Eng Chem Res. 2014;53(35):13699–13710.
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9/10):1051–1069.
  • Huang J, Bu L, Xie J, et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano. 2010;4(12):7151–7160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.