469
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1966-1982 | Received 07 Apr 2021, Accepted 01 Jul 2021, Published online: 29 Jul 2021

References

  • Caliari SR, Harley BAC. The effect of anisotropic collagen-GAG scaffolds and growth Factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials. 2011;32(23):5330–5340.
  • Damania D, Subramanian H, Tiwari AK, et al. Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture. Biophys J. 2010;99(3):989–996.
  • Zhang H, Hussain I, Brust M, et al. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater. 2005;4(10):787–793.
  • Davenport RJ. What controls organ regeneration. Science. 2005;309(5731):84.
  • Di Luca A, Longoni A, Criscenti G, et al. Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication. 2016;8(4):045007.
  • Gordon KD, Duck TR, King GJW, et al. Mechanical properties of subchondral cancellous bone of the radial head. J Orthop Trauma. 2003;17(4):285–289.
  • Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.
  • Clarke B. Normal bone anatomy and physiology. CJASN. 2008;3(Suppl 3):S131–S139.
  • Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 2006;11:43–56.
  • Zhang D, Wu X, Chen J, et al. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018;3(1):129–138.
  • Sai Y, Shiwaku Y, Anada T, et al. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Acta Biomater. 2018;69:362–371.
  • O'Hare P, Meenan BJ, Burke GA, et al. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials. 2010;31(3):515–522.
  • Bose S, Fielding G, Tarafder S, et al. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 2013;31(10):594–605.
  • Roy M, Fielding GA, Bandyopadhyay A, et al. Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater Sci. 2013;1(1):74–82.
  • Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–1169.
  • Ribeiro VP, Pina S, Costa JB, et al. Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration. ACS Appl Mater Interfaces. 2019;11(4):3781–3799.
  • Pina S, Canadas RF, Jiménez G, et al. Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs. 2017;204(3–4):150–163.
  • Ribeiro VP, Pina S, Canadas RF, et al. In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration. Regen Med Front. 2019;1:e190007.
  • Rockwood DN, Preda RC, Yücel T, et al. Materials fabrication from bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612–1631.
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8–9):991–1007.
  • Hofmann S, Hilbe M, Fajardo RJ, et al. Remodeling of tissue-engineered bone structures in vivo. Eur J Pharm Biopharm. 2013;85(1):119–129.
  • Partlow BP, Hanna CW, Rnjak-Kovacina J, et al. Highly tunable elastomeric silk biomaterials. Adv Funct Mater. 2014;24(29):4615–4624.
  • Ribeiro VP, da Silva Morais A, Maia FR, Canadas RF, et al. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomater. 2018;72:167–181.
  • Marelli B, Ghezzi CE, Alessandrino A, et al. Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials. 2012;33(1):102–108.
  • Gao C, Peng S, Feng P, et al. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5:17059.
  • Gutiérrez MC, Ferrer ML, del Monte F. Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater. 2008;20(3):634–648.
  • Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4):371–383.
  • Petersen A, Princ A, Korus G, et al. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun. 2018;9(1):1–16.
  • Yan L-P, Oliveira JM, Oliveira AL, et al. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012;8(1):289–301.
  • Pina S, Vieira S, Rego P, et al. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur Cell Mater. 2010;20:162–177.
  • Canadas RF, Ren T, Tocchio A, et al. Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials. 2018;181:402–414.
  • Canadas RF, Ren T, Marques AP, et al. Biochemical gradients to generate 3D heterotypic-like tissues with isotropic and anisotropic architectures. Adv Funct Mater. 2018;28(48):1804148.
  • Harley BA, Hastings AZ, Yannas IV, et al. Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials. 2006;27(6):866–874.
  • Shin YM, Shin HJ, Yang DH, et al. Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. J Mater Chem B. 2017;5(44):8725–8737.
  • Scotti KL, Dunand DC. Freeze casting – a review of processing, microstructure and properties via the open data repository, freezecasting. Net Prog Mater Sci. 2018;94:243–305.
  • Tabilo-Munizaga G, Barbosa-Cánovas GV. Rheology for the food industry. J Food Eng. 2005;67(1–2):147–156.
  • Zuidema JM, Rivet CJ, Gilbert RJ, et al. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res B Appl Biomater. 2014;102(5):1063–1073.
  • Murphy CM, O'Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4(3):377–381.
  • Hulbert SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970;4(3):433–456.
  • Klawitter JJ, Bagwell JG, Weinstein AM, et al. An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res. 1976;10(2):311–323.
  • Jones AC, Arns CH, Sheppard AP, et al. Assessment of bone ingrowth into porous biomaterials using micro-CT. Biomaterials. 2007;28(15):2491–2504.
  • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–5491.
  • Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules. 2004;5(3):718–726.
  • Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121(2):317–324.
  • Mantila Roosa SM, Kemppainen JM, Moffitt EN, et al. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A. 2010;92(1):359–368.
  • Elema H, de Groot JH, Nijenhuis AJ, et al. Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid Polymer Sci. 1990;268(12):1082–1088.
  • Xu F, Wu CAM, Rengarajan V, et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater. 2011;23(37):4254–4260.
  • Gurkan UA, Fan Y, Xu F, et al. Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures. Adv Mater. 2013;25(8):1192–1198.
  • Nyberg E, Rindone A, Dorafshar A, et al. Comparison of 3D-printed poly-ϵ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-Oss, or decellularized bone matrix. Tissue Eng - Part A. 2017;23(11–12):503–514.
  • Jun I, Han HS, Edwards JR, et al. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. IJMS. 2018;19(3):745.
  • Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019;12(4):568.
  • Zmora S, Glicklis R, Cohen S. Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials. 2002;23(20):4087–4094.
  • Xu Y, Zhang D, Wang ZL, et al. Preparation of porous nanocomposite scaffolds with honeycomb monolith structure by one phase solution freezedrying method. Chin J Polym Sci. 2011;29(2):215–224.
  • Reys LL, Silva SS, Pirraco RP, et al. Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. Eur Polym J. 2017;95:232–240.
  • Zhang Y, Wang C, Jiang W, et al. Influence of stage cooling method on pore architecture of biomimetic alginate scaffolds. Sci Rep. 2017;7(1):1–8.
  • Schropp L, Wenzel A, Kostopoulos L, Karring K. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. J Prosthet Dent. 2004.
  • Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J. 2014;8:56–65.
  • Fuller KP, Gaspar D, Delgado LM, et al. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ-caprolactone electro-spun fibrous scaffolds. Nanomedicine (Lond). 2016;11(9):1031–1040.
  • Ribeiro VP, Silva-Correia J, Gonçalves C, et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS One. 2018;13(4):e0194441.
  • Kaully T, Siegmann A, Shacham D. Rheology of highly filled natural CaCo3 composites. II. Effects of solid loading and particle size distribution on rotational rheometry. Polym Compos. 2007;28(4):524–533.
  • Huang B, Bártolo PJ. Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds. Polym Test. 2018;68:365–378.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:9825659.
  • Vogler EA. Protein adsorption in three dimensions. Biomaterials. 2012;33(5):1201–1237.
  • Wei Q, Becherer T, Angioletti-Uberti S, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem. 2014;.
  • D’Elia NL, Gravina N, Ruso JM, et al. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: effect of surface reactivity and interfacial hydration. J Colloid Interface Sci. 2017.
  • Motta A, Migliaresi C, Lloyd AW, et al. Serum protein absorption on silk fibroin fibers and films: surface opsonization and binding strength. J Bioact Compat Polym. 2002;17(1):23–35.
  • Mandal BB, Gil ES, Panilaitis B, et al. Laminar silk scaffolds for aligned tissue fabrication. Macromol Biosci. 2013;13(1):48–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.