153
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Novel fabrication of dual nanoparticle loaded-co-polymeric dressing for effective healing efficiency in wound care after fracture surgery

, , , & ORCID Icon
Pages 2009-2027 | Received 31 May 2021, Accepted 06 Jul 2021, Published online: 01 Aug 2021

References

  • Senagore AJ, Singer M, Abcarian H, et al. A prospective, randomized, controlled multicenter trial comparing stapled hemorrhoidopexy and Ferguson hemorrhoidectomy: perioperative and one-year results. Dis Colon Rectum. 2004;47(11):1824–1836.
  • Hyman N, O'Brien S, Osler T. Outcomes after fistulotomy: results of a prospective, multicenter regional study. Dis Colon Rectum. 2009;52(12):2022–2027.
  • Hall JF, Bordeianou L, Hyman N, et al. Outcomes after operations for anal fistula: results of a prospective, multicenter, regional study. Dis Colon Rectum. 2014;57(11):1304–1308.
  • Malini RI, Lesage J, Toncelli C, et al. Crosslinking dextran electrospun nanofibers via borate chemistry: proof of concept for wound patches. Eur Polym J. 2019;110:276–282.
  • Zhou S, Hokugo A, Mcclendon M, et al. Bioactive peptide amphiphile nanofiber gels enhance burn wound healing. Burns. 2019;45(5):1112–1121.
  • Abou-Okeil A, Fahmy HM, El-Bisi MK, et al. Hyaluronic acid/Na-alginate films as topical bioactive wound dressings. Eur Polym J. 2018;109:101–109.
  • Lee SJ, Heo DN, Moon J, et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym. 2014;111:530–537.
  • Liu R, Dai L, Si C, et al. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym. 2018;195:63–70.
  • Anisha BS, Sankar D, Mohandas A, et al. Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydr Polym. 2013;92(2):1470–1476.
  • Li S, Li L, Guo C, et al. A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. Int J Biol Macromol. 2017;104(Pt A):969–978.
  • Ye S, Jiang L, Su C, et al. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol. 2019;133:148–155.
  • Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: a review. Int J Biol Macromol. 2019;127:460–475.
  • Aderibigbe BA, Buyana B. Alginate in wound dressings. Pharmaceutics. 2018;10(2):42.
  • Clement JL, Jarrett PS. Antibacterial silver. Met Based Drugs. 1994;1(5-6):467–482.
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101.
  • Landsdown ABG. Silver I: its antibacterial properties and mechanism of action. J Wound Care. 2002;11:125–138.
  • Castellano JJ, Shafii SM, Ko F, et al. Comparative evaluation of silver‐containing antimicrobial dressings and drugs. Int Wound J. 2007;4:14–22.
  • Feng QL, Wu J, Chen GQ, et al. Mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668.
  • Liu L, Sun L, Wu Q, et al. Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm. 2013;443(1-2):175–182.
  • Choudhary V, Shivakumar HG. A review on curcumin: wound healing properties and biomarkers of wound healing. Int Res J Pharm. 2018;9(9):1–5.
  • Meng B, Li J, Cao H. Antioxidant and anti-inflammatory activities of curcumin on diabetes mellitus and its complications. CPD. 2013;19(11):2101–2113.
  • Akbik D, Ghadiri M, Chrzanowski W, et al. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1–7.
  • Lang N, Pereira MJ, Lee Y, et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci Transl Med. 2014;6(218):218ra6.
  • Behrens AM, Lee NG, Casey BJ, et al. Biodegradable-polymer-blend-based surgical sealant with body-temperature-mediated adhesion. Adv Mater. 2015;27(48):8056–8061.
  • Liu Z, Guan L, Sun K, et al. In vivo study of novelly formulated porcine-derived fibrinogen as an efficient sealant. J Mater Sci Mater Med. 2015;26(3):146.
  • Yesilirmak N, Diakonis VF, Battle JF, et al. Application of a hydrogel ocular sealant to avoid recurrence of epithelial ingrowth after LASIK enhancement. J Refract Surg. 2015;31(4):275–277.
  • Findon A, McKay G, Blair HS. Transport studies for the sorption of copper ions by chitosan. J Environ Sci Health A Environ Sci Eng. 1993;28(1):173–185.
  • Kandile NG, Nasr AS. Environment friendly modified chitosan hydrogels as a matrix for adsorption of metal ions, synthesis and characterization. Carbohydr Polym. 2009;78(4):753–759.
  • Thomas V, Murali Mohan Y, Sreedhar B, et al. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci Polym Ed. 2009;20(14):2129–2144.
  • Vimala K, Mohan YM, Varaprasad K, et al. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. JBNB. 2011;02(01):55–64.
  • Sun Q, Cai X, Li J, et al. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A. 2014;444:226–231.
  • Yallappa S, Manjanna J, Dhananjaya BL. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:236–243.
  • Vimala K, Samba Sivudu K, Murali Mohan Y, et al. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym. 2009;75(3):463–471.
  • Vimala K, Murali Mohan Y, Samba Sivudu K, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial applications. Colloids Surf B Biointerfaces. 2010;76(1):248–258.
  • Ostrowska-Czubenko J, Gierszewska-Drużyńska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym. 2009;77(3):590–598.
  • Ekici S, Saraydin D. Interpenetrating polymeric network hydrogels for potential gastrointestinal drug release. Polym Int. 2007;56(11):1371–1377.
  • Hatcher H, Planalp R, Cho J, et al. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–1652.
  • Leonhard V, Alasino RV, Munoz A, et al. Silver nanoparticles with high loading capacity of amphotericin B: characterization, bactericidal and antifungal effects. Curr Drug Deliv. 2018;15(6):850–859.
  • Yang KY, Lin L-C, Tseng T-Y, et al. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;853(1-2):183–189.
  • Jeyaraj M, Rajesh M, Arun R, et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B Biointerfaces. 2013;102:708–717.
  • Babu G, Arulvasu C, Durai P, et al. Biosynthesis and characterization of silver nanoparticles from Datura inoxia and its apoptotic effect on human breast cancer cell line MCF7. Mater Lett. 2014;122:98–102.
  • Plackal Adimuriyil George B, Kumar N, Abrahamse H, et al. Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci Rep. 2018;8(1):14368.
  • Lee YS, Kim DW, Lee YH, et al. Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells. Arch Toxicol. 2011;85(12):1529–1540.
  • Lee B, Lee MJ, Yun SJ, et al. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae. IJN. 2019;14:4801–4816.
  • Dwivedi S, Siddiqui MA, Farshori NN, et al. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf B Biointerfaces. 2014;122:209–215.
  • Nicoletti I, Migliorati G, Pagliacci MC, et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139(2):271–279.
  • Siddiqui MA, Saquib Q, Ahamed M, et al. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids Surf B Biointerfaces. 2015;125:73–81.
  • El-Sonbaty SM. Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol. 2013;4(4-5):73–79.
  • Naksuriya O, Okonogi S, Schiffelers RM, et al. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–3383.
  • Tyagi P, Singh M, Kumari H, et al. Bactericidal activity of Curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015;10(3):e0121313.
  • Clark RAF. Cutaneous tissue repair: basic biologic considerations. I. J Am Acad Dermatol. 1985;13(5 Pt 1):701–725.
  • Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010;203(1-3):93–98.
  • Menke NB, Ward KR, Witten TM, et al. Impaired wound healing. Clin Dermatol. 2007;25(1):19–25.
  • Murthy S, Gautam MK, Goel S, et al. Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. Biomed Res Int. 2013;2013:972028.
  • Nagar HK, Srivastava AK, Srivastava R, et al. Pharmacological investigation of the wound healing activity of Cestrum nocturnum (L.) ointment in Wistar albino rats. J Pharm. 2016;2016:1–8.
  • Hassan SW, Abubakar MG, Umar RA, et al. Pharmacological and toxicological properties of leaf extracts of Kingelia africana (Bignoniaceae). J Pharmacol Toxicol. 2011;6(2):124–132.
  • Puratchikody A, Devi C, Nagalakshmi G. Wound healing activity of Cyperus rotundus Linn. Indian J Pharm Sci. 2006;68(1):97–101.
  • Yang J, Guo J, Yuan J. In vitro antioxidant properties of rutin. LWT—Food Sci Technol. 2008;41(6):1060–1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.