515
Views
3
CrossRef citations to date
0
Altmetric
Articles

Biodegradable poly(lactide-co-glycolide) microspheres encapsulating hydrophobic contrast agents for transarterial chemoembolization

, , , , &
Pages 409-425 | Received 30 Aug 2021, Accepted 05 Oct 2021, Published online: 26 Oct 2021

References

  • Sieghart W, Hucke F, Peck-Radosavljevic M. Transarterial chemoembolization: modalities, indication, and patient selection. J Hepatol. 2015;62(5):1187–1195.
  • Miraglia R, Pietrosi G, Maruzzelli L, et al. Efficacy of transcatheter embolization/chemoembolization (TAE/TACE) for the treatment of single hepatocellular carcinoma. WJG. 2007;13(21):2952.
  • Guan Y-S, He Q, Wang M-Q. Transcatheter arterial chemoembolization: history for more than 30 years. ISRN Gastroenterol. 2012;2012:480650.
  • Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41–52.
  • Massani M, Stecca T, Ruffolo C, et al. Should we routinely use DEBTACE for unresectable HCC? cTACE versus DEBTACE: a single-center survival analysis. Updates Surg. 2017;69(1):67–73.
  • Tavernier J, Fagnoni P, Chabrot P, et al. Comparison of two transarterial chemoembolization strategies for hepatocellular carcinoma. Anticancer Res. 2014;34(12):7247–7253.
  • Laurent A. Microspheres and nonspherical particles for embolization [article]. Tech Vasc Interv Radiol. 2007;10(4):248–256.
  • Lewis AL. DC Bead: a major development in the toolbox for the interventional oncologist. Expert Rev Med Devices. 2009;6(4):389–400.
  • Grosso M, Giovinazzo G, Sortino D, et al. TACE with doxorubicin eluting beads (hepasphere™): results and comparison with historical personal series of standard TACE. J Vasc Interv Radiol. 2013;24(4):S13.
  • Osuga K, Nakajima Y, Sone M, et al. Transarterial embolization of hypervascular tumors using trisacryl gelatin microspheres (embosphere): a prospective multicenter clinical trial in Japan. Jpn J Radiol. 2016;34(5):366–375.
  • Okamoto Y, Hasebe T, Bito K, et al. Fabrication of radiopaque drug-eluting beads based on lipiodol/biodegradable-polymer for image-guided transarterial chemoembolization of unresectable hepatocellular carcinoma. Polym Degrad Stab. 2020; 175:109106.
  • Sang L, Luo D, Wei Z, et al. X-ray visible and doxorubicin-loaded beads based on inherently radiopaque poly(lactic acid)-polyurethane for chemoembolization therapy. Mater Sci Eng C Mater Biol Appl. 2017;75:1389–1398.
  • van Hooy-Corstjens CS, Saralidze K, Knetsch ML, et al. New intrinsically radiopaque hydrophilic microspheres for embolization: synthesis and characterization. Biomacromolecules. 2008;9(1):84–90.
  • Zeng J, Li L, Zhang H, et al. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization. Theranostics. 2018;8(17):4591–4600.
  • Thanoo BC, Sunny M, Jayakrishnan A. Preparation and properties of barium sulphate and methyl iothalamate loaded poly (vinyl alcohol) microspheres as radiopaque particulate emboli. J App Biomater. 1991;2(2):67–72.
  • Thanoo BC, Sunny MC, Jayakrishnan A. Tantalum-loaded polyurethane microspheres for particulate embolization: preparation and properties. Biomaterials. 1991;12(5):525–528.
  • Tacher V, Duran R, Lin MDe, et al. Multimodality imaging of ethiodized oil–loaded radiopaque microspheres during transarterial embolization of rabbits with VX2 liver tumors. Radiology. 2016;279(3):741–753.
  • Jayakrishnan A, Thanoo BC, Rathinam K, et al. Preparation and evaluation of radiopaque hydrogel microspheres based on PHEMA/iothalamic acid and PHEMA/iopanoic acid as particulate emboli. J Biomed Mater Res. 1990;24(8):993–1004.
  • Mottu F, Rüfenacht D, Laurent A, et al. Iodine-containing cellulose mixed esters as radiopaque polymers for direct embolization of cerebral aneurysms and arteriovenous malformations. Biomaterials. 2002;23(1):121–131.
  • James NR, Jayakrishnan A. On imparting radiopacity to a poly(urethane urea)). Biomaterials. 2007;28(21):3182–3187.
  • Verret V, Pelage JP, Wassef M, et al. A novel resorbable embolization microsphere for transient uterine artery occlusion: a comparative study with trisacryl-gelatin microspheres in the sheep model [article]. J Vasc Interv Radiol. 2014;25(11):1759–1766.
  • Maeda N, Verret V, Moine L, et al. Targeting and recanalization after embolization with calibrated resorbable microspheres versus hand-cut gelatin sponge particles in a porcine kidney model [article. J Vasc Interv Radiol. 2013;24(9):1391–1398. ].
  • Juni K, Ogata J, Nakano M, et al. Preparation and evaluation in vitro and in vivo of polylactic acid microspheres containing doxorubicin. Chem Pharm Bull (Tokyo). 1985;33(1):313–318.
  • Chiang P-F, Peng C-L, Shih Y-H, et al. Biodegradable and multifunctional microspheres for treatment of hepatoma through transarterial embolization. ACS Biomater Sci Eng. 2018;4(9):3425–3433.
  • Choi JW, Park JH, Baek SY, et al. Doxorubicin-loaded poly(lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor [article]. Colloids Surf, B. 2015;132:305–312.
  • Liu X, Heng WS, Paul, et al. Novel polymeric microspheres containing norcantharidin for chemoembolization [article]. J Controll Release. 2006;116(1):35–41.
  • Salis A, Porcu EP, Gavini E, et al. In situ forming biodegradable poly(ε-caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies. Expert Opin Drug Deliv. 2017;14(4):453–465.
  • Doucet J, Kiri L, O’Connell K, et al. Advances in degradable embolic microspheres: a state of the art review. JFB. 2018;9(1):14.
  • Kunliang L, Zhicheng J, Xiaolong H, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization. Int J Biol Macromol. 2020;142:866–878.
  • Hirasawa T, Asahara S, Fujisaki S, et al. Transcatheter arterial chemoembolization (TACE) using degradable starch microspheres (DSM) for metastatic liver tumors in patients with gastric cancer. Nihon Shokakibyo Gakkai Zasshi. 2008;105(3):367–372.
  • Lucatelli P, De Rubeis G, Basilico F, et al. Sequential dual-phase cone-beam CT is able to intra-procedurally predict the one-month treatment outcome of multi-focal HCC, in course of degradable starch microsphere TACE. Radiol Med. 2019;124(12):1212–1219.
  • Iezzi R, Pompili M, Nestola M, Hepatocatt Study Group, et al. Transarterial chemoembolization with degradable starch microspheres (DSM-TACE): an alternative option for advanced HCC patients? Preliminary results. Eur Rev Med Pharmacol Sci. 2016;20(13):2872–2877.
  • Weng L, Rostamzadeh P, Nooryshokry N, et al. In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater. 2013;9(6):6823–6833.
  • Duran R, Sharma K, Dreher MR, et al. A novel inherently radiopaque bead for transarterial embolization to treat liver Cancer - A Pre-clinical Study. Theranostics. 2016;6(1):28–39.
  • Wang W, Wei Z, Sang L, et al. Development of X-ray opaque poly (lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. Eur Polym J. 2018;108:337–347.
  • Choi JW, Park J-H, Cho HR, et al. Sorafenib and 2, 3, 5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor. Sci Rep. 2017;7(1):1–13.
  • Wang W, Sang L, Guan Q, et al. X-ray visible microspheres derived from highly branched biodegradable poly (lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior. Polym Degrad Stab. 2020;176:109149.
  • Bayne K. Revised guide for the care and use of laboratory animals available. Physiologist. 1996;39(4)199, :199, 208–211.
  • Lee SY, Choi JW, Lee J-Y, et al. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor. Drug Deliv. 2018;25(1):1472–1483.
  • Eivindvik K, Sjøgren C. Physicochemical properties of iodixanol. Acta Radiol Suppl. 1995;399(399_suppl):32–38.
  • Dudeck O, Jordan O, Hoffmann K-T, et al. Intrinsically radiopaque iodine-containing polyvinyl alcohol as a liquid embolic agent: evaluation in experimental wide-necked aneurysms. J Neurosurg. 2006;104(2):290–297.
  • Mizutani K, Shinomiya K, Shinomiya T. Hepatotoxicity of dichloromethane [article. Forensic Sci Int. 1988;38(1-2):113–128. ].
  • Vogl TJ, Naguib NN, Nour-Eldin N-EA, et al. Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur J Radiol. 2009;72(3):505–516.
  • Arcamone F. Doxorubicin: anticancer antibiotics. Elsevier; 2012.
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–170.
  • Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol. 2018;09(05)
  • Lundbeck F, Pedersen D, Stroyer I, et al. Absorption of doxorubicin hydrochloride during bladder washings in treatment of noninvasive bladder tumors. Urology. 1981;18(2):161–163.
  • Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. 2007.
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-a review. Int J Pharm. 2011;415(1-2):34–52.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel)). 2011;3(3):1377–1397.
  • Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release [article]. J Control Release. 2007;122(3):338–344.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Delivery Rev. 2012;64:72–82.
  • Yelles MH-B, Tan VT, Danede F, et al. PLGA implants: How poloxamer/PEO addition slows down or accelerates polymer degradation and drug release. J Control Release. 2017;253:19–29.
  • Versypt ANF, Pack DW, Braatz RD. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review. J Control Release. 2013;165(1):29–37.
  • van Bochove B, Grijpma DW. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. J Biomater Sci Polym Ed. 2019;30(2):77–106.
  • Nicholson TA, Pelage JP, Ettles DF. Fibroid calcification after uterine artery embolization: Ultrasonographic appearance and pathology [article]. J Vasc Interv Radiol. 2001;12(4):443–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.