382
Views
5
CrossRef citations to date
0
Altmetric
Articles

Introducing a flexible drug delivery system based on poly(glycerol sebacate)-urethane and its nanocomposite: potential application in the prevention and treatment of oral diseases

, , , , , , , & show all
Pages 443-464 | Received 29 Jul 2021, Accepted 09 Oct 2021, Published online: 22 Oct 2021

References

  • Anand R, Kumar A. Significant biopolymers and their applications in buccal mediated drug delivery. J Biomater Sci Polym Ed. 2021;32(9):1203–1218.
  • Hosseini H, Zirakjou A, Goodarzi V, et al. Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. Int J Biol Macromol. 2020;152:57–67.
  • Sawada S, Yukawa H, Takeda S, et al. Self-assembled nanogel of cholesterol-bearing xyloglucan as a drug delivery nanocarrier. J Biomater Sci Polym Ed. 2017;28(10–12):1183–1198.
  • Hosseini SM, Shahrousvand M, Shojaei S, et al. Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): characterization and dye removal ability. Int J Biol Macromol. 2020;152:884–893.
  • Seyfi J, Panahi-Sarmad M, OraeiGhodousi A, et al. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Colloids Surf B Biointerfaces. 2019;183:110438.
  • Hosseini H, Teymouri M, Saboor S, et al. Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. Eur Polym J. 2019;115:335–345.
  • Rai R, Tallawi M, Grigore A, et al. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci. 2012;37(8):1051–1078.
  • Wu T, Frydrych M, O'Kelly K, et al. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects. Biomacromolecules. 2014;15(7):2663–2671.
  • Samourides A, Browning L, Hearnden V, et al. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Mater Sci Eng C Mater Biol Appl. 2020;108:110384.
  • Ravichandran R, Venugopal JR, Sundarrajan S, et al. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology. 2012;23(38):385102.
  • Ifkovits JL, Devlin JJ, Eng G, et al. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). ACS Appl Mater Interfaces. 2009;1(9):1878–1886.
  • Wu Z, Jin K, Wang L, et al. A review: Optimization for poly(glycerol sebacate) and fabrication techniques for its centered scaffolds. Macromol Biosci. 2021;21(9):2100022.
  • Vogt L, Ruther F, Salehi S, et al. Poly(glycerol sebacate) in biomedical applications—a review of the recent literature. Adv Healthc Mater. 2021;10(9):2002026.
  • Nijst CLE, Bruggeman JP, Karp JM, et al. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules. 2007;8(10):3067–3073.
  • Pereira MJN, Ouyang B, Sundback CA, et al. A highly tunable biocompatible and multifunctional biodegradable elastomer. Adv Mater. 2013;25(8):1209–1215.
  • Amsden B. Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter. 2007;3(11):1335–1348.
  • Amsden BG. Biodegradable elastomers in drug delivery. Expert Opin Drug Deliv. 2008;5(2):175–187. Available from:.
  • Ganguly S, Maity PP, Mondal S, et al. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C Mater Biol Appl. 2018;92:34–51.
  • Bettinger CJ. Synthetic biodegradable elastomers for drug delivery and tissue engineering. Pure Appl Chem. 2010;83(1):9–24.
  • El-Laboudy H, Shaker MA, Younes HM. Soft biodegradable elastomers based on poly (octanediol-tartarate) for drug delivery and tissue engineering: synthesis, characterization and biocompatibility studies. Soft Mater. 2011;9(4):409–428.
  • Mollazadeh-Moghaddam K, Rezaei Nejad H, Chen A-Z, et al. Fracture-resistant and bioresorbable drug-eluting poly(glycerol sebacate) coils. Adv Ther. 2019;2(3):1800109.
  • Sun ZJ, Chen C, Sun MZ, et al. The application of poly (glycerol-sebacate) as biodegradable drug carrier. Biomaterials. 2009;30(28):5209–5214.
  • Gaharwar AK, Patel A, Dolatshahi-Pirouz A, et al. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater Sci. 2015;3(1):46–58.
  • Zaky SH, Hangadora CK, Tudares MA, et al. Poly (glycerol sebacate) elastomer supports osteogenic phenotype for bone engineering. Biomed Mater. 2014;9(2):025003.
  • Jia Y, Wang W, Zhou X, et al. Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications. Polym Chem. 2016;7(14):2553–2564.
  • Rasoulzadehzali M, Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int J Biol Macromol. 2018;116:54–63.
  • Jin L, Zeng Z, Kuddannaya S, et al. Biocompatible, free-standing film composed of bacterial cellulose nanofibers-graphene composite. ACS Appl Mater Interfaces. 2016;8(1):1011–1018.
  • Wang R, Shou D, Lv O, et al. pH-controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol. 2017;103:248–253.
  • Hosseini H, Kokabi M, Mousavi SM. Conductive network formation in bacterial cellulose-based nanocomposite aerogels. Compos Part B Eng. 2019;174:106981.
  • Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, et al. Vitamin C loaded poly(urethane-urea)/ZnAl-LDH aligned scaffolds increase proliferation of corneal keratocytes and up-regulate vimentin secretion. ACS Appl Mater Interfaces. 2019;11(39):35525–35539.
  • Nath J, Dolui SK. Synthesis of carboxymethyl cellulose-g-poly(acrylic acid)/LDH hydrogel for in vitro controlled release of vitamin B12. Appl Clay Sci. 2018;155:65–73.
  • Jafarbeglou M, Abdouss M, Shoushtari AM, et al. Clay nanocomposites as engineered drug delivery systems. RSC Adv. 2016;6(55):50002–50016.
  • Park S, Park J, Jo I, et al. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials. 2015;58:93–102.
  • Heidarshenas M, Kokabi M, Hosseini H. Shape memory conductive electrospun PVA/MWCNT nanocomposite aerogels. Polym J. 2019;51(6):579–590.
  • Hosseini H, Kokabi M, Mousavi SM. BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer. 2018;137:82–96.
  • Aghajan MH, Panahi-Sarmad M, Alikarami N, et al. Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur Polym J. 2020;131:109720.
  • Ferrer CT, Rizk M, Sydow HG, et al. Nanocomposites based on poly (glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering. Int J Polym Mater Polym Biomater. 2019;69:761–772.
  • Frydrych M, Román S, Green NH, et al. Thermoresponsive, stretchable, biodegradable and biocompatible poly(glycerol sebacate)-based polyurethane hydrogels. Polym Chem. 2015;6(46):7974–7987.
  • Frydrych M, Chen B. Fabrication, structure and properties of three-dimensional biodegradable poly (glycerol sebacate urethane) scaffolds. Polymer. 2017;122:159–168.
  • Wang Z, Ma Y, Wang Y, et al. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Acta Biomater. 2018;71:279–292.
  • Yang B, Lv W, Deng Y. Drug loaded poly(glycerol sebacate) as a local drug delivery system for the treatment of periodontal disease. RSC Adv. 2017;7(59):37426–37435.
  • Sotoudeh A, Darbemamieh G, Goodarzi V, et al. Tissue engineering needs new biomaterials: poly(xylitol-dodecanedioic acid)-co-polylactic acid (PXDDA-co-PLA) and its nanocomposites. Eur Polym J. 2021;152:110469.
  • Hosseini Chenani F, Rezaei VF, Fakhri V, et al. Green synthesis and characterization of poly(glycerol-azelaic acid) and its nanocomposites for applications in regenerative medicine. J Appl Polym Sci. 2021;138(24):50563.
  • Farjaminejad S, Shojaei S, Goodarzi V, et al. Tuning properties of bio-rubbers and its nanocomposites with addition of succinic acid and ɛ-caprolactone monomers to poly(glycerol sebacic acid) as main platform for application in tissue engineering. Eur Polym J. 2021;159:110711.
  • Rostamian M, Kalaee MR, Dehkordi SR, et al. Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polym J. 2020;138:109985.
  • Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7–8):1279–1287.
  • Martínez-Vázquez FJ, Cabañas MV, Paris JL, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 2015;15:200–209.
  • Gutiérrez MC, García-Carvajal ZY, Jobbágy M, et al. Poly(vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Adv Funct Mater. 2007;17(17):3505–3513.
  • Nikfar S, Parsa A, Bahaloo-Horeh N, et al. Enhanced bioleaching of Cr and Ni from a chromium-rich electroplating sludge using the filtrated culture of Aspergillus niger. J Clean Prod. 2020;264:121622.
  • Wu T, O'Kelly K, Chen B. Poly(methacrylic acid)-grafted clay–thermoplastic elastomer composites with water-induced shape-memory effects. J Polym Sci Part B: Polym Phys. 2013;51(20):1513–1522.
  • Bahaloo-Horeh N, Mousavi SM. Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. J Hazard Mater. 2020;400:123186.
  • Sadeghabad MS, Bahaloo-Horeh N, Mousavi SM. Using bacterial culture supernatant for extraction of manganese and zinc from waste alkaline button-cell batteries. Hydrometallurgy. 2019;188:81–91.
  • Aghjeh MR, Kazerouni Y, Otadi M, et al. A combined experimental and theoretical approach to quantitative assessment of microstructure in PLA/PP/organo-clay nanocomposites; wide-angle X-ray scattering and rheological analysis. Compos Part B Eng. 2018;137:235–246.
  • Hosseini H, Mousavi SM, Wurm FR, et al. Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modeling. Eur Polym J. 2021;146:110251.
  • Khamwongsa P, Pichi P, Chotiradsirikun S, et al. Significant increases in the dielectric properties of Zn2+-modified porous clay and bacterial cellulose composite sheets. J Mater Sci Mater Electron. 2021;32:10600–10610.
  • Hosseini H, Mousavi SM. Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: Experimental and simulation study. J Clean Prod. 2021;278:123817.
  • Luo H, Ao H, Li G, et al. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys. 2017;17(2):249–254.
  • Juncu G, Stoica-Guzun A, Stroescu M, et al. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int J Pharm. 2016;510(2):485–492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.