179
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis of PEGylated cationic curdlan derivatives with enhanced biocompatibility

, , , , , , & show all
Pages 465-480 | Received 09 Aug 2021, Accepted 09 Oct 2021, Published online: 22 Oct 2021

References

  • Ku SH, Jo SD, Lee YK, et al. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.
  • Erdene-Ochir T, Ganbold T, Zandan J, et al. Alkylation enhances biocompatibility and siRNA delivery efficiency of cationic curdlan nanoparticles. Int J Biol Macromol. 2020;143:118–125.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811.
  • Couzin J. Breakthrough of the year. Small RNAs make big splash. Science. 2002;298(5602):2296–2297.
  • Shum K, Rossi J. siRNA delivery methods. New York (NY): Humana Press; 2016.
  • Rao DD, Vorhies JS, Senzer N, et al. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev. 2009;61(9):746–759.
  • Tabernero J, Shapiro GI, LoRusso PM, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–417.
  • Chakradhar S. Treatments that made headlines in 2018. Nat Med. 2018;24(12):1785–1787.
  • Agarwal S, Simon AR, Goel V, et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clin Pharmacol Ther. 2020;108(1):63–72.
  • Scott LJ, Keam SJ. Lumasiran: First approval. Drugs. 2021;81(2):277–282.
  • Nikam RR, Gore KR. Journey of siRNA: clinical developments and targeted delivery. Nucleic Acid Ther. 2018;28(4):209–224.
  • Turner JJ, Jones SW, Moschos SA, Lindsay MA, et al. MALDI-TOF mass spectral analysis of siRNA degradation in serum confirms an RNAse A-like activity. Mol Biosyst. 2007;3(1):43–50.
  • Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9(1):57–67.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–178.
  • Uludağ H, Landry B, Valencia-Serna J, et al. Current attempts to implement siRNA-based RNAi in leukemia models. Drug Discov Today. 2016;21(9):1412–1420.
  • Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev. 2013;65(1):60–70.
  • Shegokar R, Al Shaal L, Mishra PR. SiRNA delivery: challenges and role of carrier systems. Pharmazie. 2011;66(5):313–318.
  • Abou-El-Enein M, Bauer G, Reinke P. The business case for cell and gene therapies. Nat Biotechnol. 2014;32(12):1192–1193.
  • Braasch DA, Paroo Z, Constantinescu A, et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett. 2004;14(5):1139–1143.
  • Choung S, Kim YJ, Kim S, et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342(3):919–927.
  • Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA. 2003;9(9):1034–1048.
  • Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31(2):589–595.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555.
  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–974.
  • Curcio M, Cirillo G, Rouaen JRC, et al. Natural polysaccharide carriers in brain delivery: challenge and perspective. Pharmaceutics. 2020;12(12):1183.
  • Sakr MA, Sakthivel K, Hossain T, et al. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res. 2021;
  • Zhang YM, Yang Y, Zhang YH, et al. Polysaccharide nanoparticles for efficient siRNA targeting in cancer cells by supramolecular pKa shift. Sci Rep. 2016;6:28848.
  • Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14(4):476–484.
  • Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–1070.
  • Han J, Cai J, Borjihan W, et al. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydr Polym. 2015;117:324–330.
  • Wu Y, Cai J, Han J, et al. Cell type-specific delivery of RNAi by ligand-functionalized curdlan nanoparticles: balancing the receptor mediation and the charge motivation. ACS Appl Mater Interfaces. 2015;7(38):21521–21528.
  • Ganbold T, Baigude H. Design of mannose-functionalized curdlan nanoparticles for macrophage-targeted siRNA delivery. ACS Appl Mater Interfaces. 2018;10(17):14463–14474.
  • Ganbold T, Han S, Hasi A, et al. Receptor-mediated delivery of therapeutic RNA by peptide functionalized curdlan nanoparticles. Int J Biol Macromol. 2019;126:633–640.
  • Bao M, Ehexige E, Xu J, et al. Oxidized curdlan activates dendritic cells and enhances antitumor immunity. Carbohydr Polym. 2021;264:117988.
  • Zhang R, Snyder GH. Kinetics of disulfide exchange reactions of monomer and dimer loops of cysteine-valine-cysteine peptides. Biochemistry. 1988;27(10):3785–3794.
  • Tong Y, Ganbold T, Baigude H. Synthesis of amphoteric curdlan derivatives for delivery of therapeutic nucleic acids. Carbohydr Polym. 2017;175:739–745.
  • Han J, Wang X, Liu L, et al. “Click” chemistry mediated construction of cationic curdlan nanocarriers for efficient gene delivery. Carbohydr Polym. 2017;163:191–198.
  • Altangerel A, Cai J, Liu L, et al. PEGylation of 6-amino-6-deoxy-curdlan for efficient in vivo siRNA delivery. Carbohydr Polym. 2016;141:92–98.
  • Tseng CL, Su WY, Yen KC, et al. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials. 2009;30(20):3476–3485.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427.
  • Saha K, Moyano DF, Rotello VM. Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. Mater Horiz. 2014;2014(1):102–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.