594
Views
2
CrossRef citations to date
0
Altmetric
Articles

Fabrication of thrombin loaded TEMPO-oxidized cellulose nanofiber-gelatin sponges and their hemostatic behavior in rat liver hemorrhage model

, , &
Pages 499-516 | Received 11 Aug 2021, Accepted 11 Oct 2021, Published online: 20 Oct 2021

References

  • Pourshahrestani S, Zeimaran E, Kadri NA, et al. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv Healthcare Mater. 2020;9(20):2000905.
  • Zhou L, Xi Y, Xue Y, et al. Injectable self‐healing antibacterial bioactive polypeptide‐based hybrid nanosystems for efficiently treating multidrug resistant infection, skin‐tumor therapy, and enhancing wound healing. Adv Funct Mater. 2019;29(22):1806883.
  • Alam HB, Koustova E, Rhee P. Combat casualty care research: from bench to the battlefield. World J Surg. 2005;29(S1):S7–S11.
  • Ratner BD, Horbett TA, Wagner WR. Evaluation of blood–materials interactions. Biomaterials science. Elsevier; 2020. p. 879–898.
  • Zhang K, Bai X, Yuan Z, et al. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials. 2019;204:70–79.
  • Li D, Chen J, Wang X, et al. Recent advances on synthetic and polysaccharide adhesives for biological hemostatic applications. Front Bioeng Biotechnol. 2020;8:926.
  • Zhao X, Wu H, Guo B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47.
  • Xu L-C, Bauer JW, Siedlecki CA. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf B Biointerfaces. 2014;124:49–68.
  • Hanson SR, Tucker EI, Latour RA. 2.2.6 – Blood coagulation and blood–material interactions. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, editors. Biomaterials science. 4th ed. Cambridge: Academic Press; 2020. p. 801–812.
  • Wang L, Zhong Y, Qian C, et al. A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater. 2020;114:193–205.
  • Cheng HH, Xiong J, Xie ZN, et al. Thrombin‐loaded poly(butylene succinate)‐based electrospun membranes for rapid hemostatic application. Macromol Mater Eng. 2018;303(2):1700395.
  • Alizadeh M, Abbasi F, Khoshfetrat A, et al. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3958–3967.
  • Sultana T, Van Hai H, Abueva C, et al. TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention. Mater Sci Eng C Mater Biol Appl. 2019;102:12–21.
  • Hu Z, Zhang D-Y, Lu S-T, et al. Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs. 2018;16(8):273.
  • Guralnick WC. Absorbable gelatin sponge and thrombin in oral surgery. Am J Orthodontic Oral Surg. 1946;32(12):792–794.
  • Yao C-H, Chen K-Y, Chen Y-S, et al. Lithospermi radix extract-containing bilayer nanofiber scaffold for promoting wound healing in a rat model. Mater Sci Eng C Mater Biol Appl. 2019;96:850–858.
  • Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–2575.
  • Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4(1):102–106.
  • Sultana T, Gwon J-G, Lee B-T. Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention. Mater Sci Eng C Mater Biol Appl. 2020;110:110661.
  • Sultana T, Van Hai H, Park M, et al. Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydr Polym. 2020;229:115552.
  • Sasidharan A, Panchakarla LS, Sadanandan AR, et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small. 2012;8(8):1251–1263.
  • Ong S-Y, Wu J, Moochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323–4332.
  • Quan K, Li G, Tao L, et al. Diaminopropionic acid reinforced graphene sponge and its use for hemostasis. ACS Appl Mater Interfaces. 2016;8(12):7666–7673.
  • Liu M, Shen Y, Ao P, et al. The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv. 2014;4(45):23540–23553.
  • Englehart MS, Cho SD, Tieu BH, et al. A novel highly porous silica and chitosan-based hemostatic dressing is superior to HemCon and gauze sponges. J Trauma Acute Care Surg. 2008;65(4):884–892.
  • Bhattacharya S, Gubbins KE. Fast method for computing pore size distributions of model materials. Langmuir. 2006;22(18):7726–7731.
  • Tomaiuolo M, Stalker TJ, Welsh JD, et al. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood, J Am Soc Hematol. 2014;124(11):1816–1823.
  • Wang C, Luo W, Li P, et al. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr Polym. 2017;174:432–442.
  • Wulandari W, Rochliadi A, Arcana I, editors. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP conference series: materials science and engineering. IOP Publishing; 2016.
  • Mandal A, Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym. 2011;86(3):1291–1299.
  • Muyonga J, Cole C, Duodu K. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 2004;86(3):325–332.
  • Hanani ZN, Roos Y, Kerry JP. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocoll. 2012;29(1):144–151.
  • Pradini D, Juwono H, Madurani KA, et al. A preliminary study of identification halal gelatin using quartz crystal microbalance (QCM) sensor. Mal J Fund Appl Sci. 2018;14(3):325–330.
  • Sukul M, Ventura RD, Bae SH, et al. Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater Lett. 2017;197:150–155.
  • Chen F, Jiang H, Chen W, et al. Interaction of the synthetic antithrombotic peptide P10 with thrombin: a spectroscopy study. RSC Adv. 2019;9(32):18498–18505.
  • Cheng F, Liu C, Wei X, et al. Preparation and characterization of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanocrystal/alginate biodegradable composite dressing for hemostasis applications. ACS Sustain Chem Eng. 2017;5(5):3819–3828.
  • Li G, Quan K, Liang Y, et al. Graphene–montmorillonite composite sponge for safe and effective hemostasis. ACS Appl Mater Interfaces. 2016;8(51):35071–35080.
  • Schonauer C, Tessitore E, Moraci A, et al. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Haemostasis in spine surgery. Berlin: Springer; 2005. p. 89–96.
  • Shefa AA, Taz M, Lee SY, et al. Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydr Polym. 2019;208:168–179.
  • Karim Z, Afrin S. Nanocellulose as novel supportive functional material for growth and development of cells. Cell Dev Biol. 2015;4(2):1000154.
  • Quan K, Li G, Luan D, et al. Black hemostatic sponge based on facile prepared cross-linked graphene. Colloids Surf B Biointerfaces. 2015;132:27–33.
  • Khoshmohabat H, Paydar S, Makarem A, et al. A review of the application of cellulose hemostatic agent on trauma injuries. Open Access Emerg Med. 2019;11:171–177.
  • Shabanova EM, Drozdov AS, Fakhardo AF, et al. Thrombin@ Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci Rep. 2018;8(1):1–10.
  • Spronk HM, Govers‐Riemslag JW, ten Cate H. The blood coagulation system as a molecular machine. Bioessays. 2003;25(12):1220–1228.
  • Hoffman M, Monroe DM, Roberts HR. Cellular interactions in hemostasis. Pathophysiol Haemos Thromb. 1996;26(1):12–16.
  • Nemerson Y. Tissue factor and hemostasis. [Published erratum appears in Blood 1988;71(4):1178]. 1988.
  • Hoffman M, Monroe DM. III A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.