325
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Remineralization of human dentin type I collagen fibrils induced by carboxylated polyamidoamine dendrimer/amorphous calcium phosphate nanocomposite: an in vitro study

, , , , & ORCID Icon
Pages 668-686 | Received 02 Oct 2021, Accepted 17 Nov 2021, Published online: 24 Nov 2021

References

  • Ensanya AN, Anas A, Adam S, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomed. 2016;11(1):4743–4763.
  • Wang L, Nancollas GH. Dynamics of biomineralization and biodemineralization. Met Ions Life Sci. 2010;4(1):413–456.
  • Breschi L, Martin P, Mazzoni A, et al. Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dent Mater. 2010;26(6):571–578.
  • Su M, Yao S, Gu L, et al. Antibacterial effect and bond strength of a modified dental adhesive containing the peptide nisin. Peptides. 2018;99:189–194.
  • Chrysanthakopoulos NA. Placement, replacement and longevity of composite resin-based restorations in permanent teeth in Greece . Int Dent J. 2012;62(3):161–166.
  • Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res. 2008;87(8):710–719.
  • Tsitaisvili L, Margvelashvili M, Kalandadze M, et al. The prevalence of dental caries among adult population of different regions of Georgia. Georgian Med News. 2014;21(232–233):21–28.
  • Beazoglou T, Eklund S, Heffley D, et al. Economic impact of regulating the use of amalgam restorations. Public Health Rep. 2007;122(5):657–663.
  • Tezvergil-Mutluay A, Agee KA, Mazzoni A, et al. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins? Dent Mater. 2015;31(2):e25–e32.
  • Zhang ZY, Tian FC, Niu LN, et al. Defying ageing: an expectation for dentine bonding with universal adhesives? J Dent. 2016;45(1):43–52.
  • Collins MJ, Nielsen–Marsh CM, Hiller J, et al. The survival of organic matter in bone: a review. Archaeometry. 2002;44(3):383–394.
  • Shao C, Zhao R, Jiang S, et al. Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control. Adv Mater. 2018;30(8):1704876–1704877.
  • Cao Y, Liu W, Ning T, et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Investig. 2014;18(3):873–881.
  • Padovano JD, Ravindran S, Snee PT, et al. DMP1-derived peptides promote remineralization of human dentin. J Dent Res. 2015;94(4):608–614.
  • Chien YC, Tao J, Saeki K, et al. Using biomimetic polymers in place of noncollagenous proteins to achieve functional remineralization of dentin tissues. ACS Biomater Sci Eng. 2017;3(12):3469–3479.
  • Gulseren G, Tansik G, Garifullin R, et al. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization. Macromol Biosci. 2019;19(1):1800080.
  • Cao CY, Mei ML, Li QL, et al. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015;16(3):4615–4627.
  • Kim YK, Yiu CK, Kim JR, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res. 2010;89(3):230–235.
  • Liu Y, Kim YK, Dai L, Li N, et al. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials. 2011;32(5):1291–1300.
  • Nancollas GH, Wu W. Biomineralization mechanisms: a kinetics and interfacial energy approach. J Cryst Growth. 2000;211(1–4):137–142.
  • Xu A-W, Ma Y, Cölfen H. Biomimetic mineralization. J Mater Chem. 2007;17(5):415–449.
  • Olszta MJ, Odom DJ, Douglas EP, et al. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44(1):326–334.
  • Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010;6(12):4457–4475.
  • Nudelman F, Lausch AJ, Sommerdijk NAJM, et al. In vitro models of collagen biomineralization. J Struct Biol. 2013;183(2):258–259.
  • Xie B, Halter TJ, Borah BM, et al. Tracking amorphous precursor formation and transformation during induction stages of nucleation. Cryst Growth Des. 2014;14(4):1659–1665.
  • Olszta MJ, Cheng X, Sang SJ, et al. Bone structure and formation: a new perspective. Mater Sci Eng R Rep. 2007;58(3–5):77–116.
  • Landis WJ, Jacquet R. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int. 2013;93(4):329–337.
  • Gericke A, Qin C, Sun Y, et al. Different forms of DMP1 play distinct roles in mineralization. J Dent Res. 2010;89(4):355–324.
  • Gupta H, Seto J, Wagermaier W, et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA. 2006;103(47):17741–17746.
  • Aizenberg J, Weaver JC, Thanawala MS, et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science. 2005;309(5732):275–278.
  • Xiao S, Liang K, Weir MD, et al. Combining bioactive multifunctional dental composite with PAMAM for root dentin remineralization. Materials (Basel, Switzerland). 2017;10(1):89.
  • Liang K, Weir MD, Reynolds MA, et al. Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid. Mater Sci Eng C, Mater Biol Appl. 2017;72(1):7–17.
  • Liang K, Weir MD, Xie X, et al. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite. Dent Mater. 2016;32(11):1429–1440.
  • Abuna G, Feitosa VP, Correr AB, et al. Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium–phosphate fillers and biomimetic analogs of phosphoproteins. J Dent. 2016;52(1):79–86.
  • Zhang W, Luo XJ, Niu LN, et al. Biomimetic intrafibrillar mineralization of type I collagen with intermediate precursors-loaded mesoporous carriers. Sci Rep. 2015;5(1):11199.
  • Liang K, Yuan H, Li J, et al. Remineralization of demineralized dentin induced by amine‐terminated PAMAM dendrimer. Macromol Mater Eng. 2015;300(1):107–117.
  • Gu LS, Kim J, Kim YK, et al. A chemical phosphorylation-inspired design for type I collagen biomimetic remineralization. Dent Mater. 2010;26(11):1077–1089.
  • Xie F, Long J, Yang J, et al. Effect of a new modified polyamidoamine dendrimer biomimetic system on the mineralization of type I collagen fibrils: an in vitro study. J Biomater Sci, Polym Ed. 2021;1:1–17.
  • Li J, Yang JJ, Li J, et al. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials. 2013;34(28):6738–6747.
  • Tao S, Fan M, Xu H, et al. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017;7(87):54947–54955.
  • Liang K, Wang S, Tao S, et al. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019;11(2):15.
  • Xie F, Wei X, Qiurong LI, et al. In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion. Dent Mater J. 2016;35(1):104–111.
  • Politi Y, Arad T, Klein E, et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science. 2004;306(5699):1161–1164.
  • Lee J, Han YJ, Willey TM, et al. Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film. J Am Chem Soc. 2007;129(34):10370–10381.
  • Chen C, Weir MD, Cheng L, et al. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater. 2014;30(8):891–901.
  • Toroian D, Lim JE, Price PA. The size exclusion characteristics of type I collagen: implications for the role of noncollagenous bone constituents in mineralization. J Biol Chem. 2007;282(31):22437–22447.
  • Nancollas GH, Mohan MS. The growth of hydroxyapatite crystals. Arch Oral Biol. 1970;15(8):731–745.
  • Li Y, Wiliana T, Tam KC. Synthesis of amorphous calcium phosphate using various types of cyclodextrins. Mater Res Bull. 2007;42(5):820–827.
  • Chen M, Yang J, Li J, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater. 2014;10(10):4437–4446.
  • Tsiourvas D, Tsetsekou A, Kammenou MI, et al. Controlling the formation of hydroxyapatite nanorods with dendrimers. J Am Ceram Soc. 2011;94(7):2023–2029.
  • Zhou ZH, Zhou PL, Yang SP, et al. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Mater Res Bull. 2007;42(9):1611–1618.
  • Masayuki N, Hajime T, Mitsuo T. Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: an ab initio molecular orbital study. J Phys Chem. 1996;100(51):19812–19817.
  • Hakimimehr D, Liu D-M, Troczynski T. In-situ preparation of poly(propylene fumarate)-hydroxyapatite composite. Biomaterials. 2005;26(35):7297–7303.
  • Keskar M, Sabatini C, Chong C, et al. Synthesis and characterization of silver nanoparticle-loaded amorphous calcium phosphate microspheres for dental applications. Nanoscale Adv. 2019;1(2):627–635.
  • Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res. 1975;8(8):273–281.
  • Silver FH, Landis WJ. Deposition of apatite in mineralizing vertebrate extracellular matrices: a model of possible nucleation sites on type I collagen. Connect Tissue Res. 2011;52(3):242–254.
  • Suvorova EI, Buffat PA. Electron diffraction from micro- and nanoparticles of hydroxyapatite. J Microsc. 2010;196(1):46–58.
  • Handa T, Anada T, Honda Y, et al. The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects. Acta Biomater. 2012;8(3):1190–1200.
  • Liang K, Zhou H, Weir M, et al. Poly(amido amine) and calcium phosphate nanocomposite remineralization of dentin in acidic solution without calcium phosphate ions. Dent Mater. 2017;33(7):818–829.
  • Lin X, Xie F, Ma X, et al. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J Biomater Sci Polym Ed. 2017;28(9):846–863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.