680
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Thermoplastic starch nanocomposites: sources, production and applications – a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 900-945 | Received 22 Aug 2021, Accepted 17 Dec 2021, Published online: 07 Jan 2022

References

  • Kiruthika AV. Properties and end-of-life of polymers from renewable resources. Encycl Renew Sustain Mater. 2020;11(24):253–262.
  • RameshKumar S, Shaiju P, O'Connor KE, et al. Bio-based and biodegradable polymers - state-of-the-art, challenges and emerging trends. Curr Opin Green Sustain Chem. 2020;21:75–81.
  • Rydz J, Sikorska W, Musioł M, et al. Sustainable future alternative: (bio)degradable polymers for the environment. Encycl Renew Sustain Mater. 2020;13(9):274–284.
  • Fan Y, Picchioni F. Modification of starch: a review on the application of “green” solvents and controlled functionalization. Carbohydr Polym. 2020;241:116350.
  • Ren J, Dang KM, Pollet E, et al. Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content. Polymers (Basel). 2018;10(8):808.
  • Llanos JHR, Tadini CC. Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol. 2018;107(Pt A):371–382.
  • Pan H, Ju D, Zhao Y, et al. Mechanical properties, hydrophobic properties and thermal stability of the biodegradable poly(butylene adipate-co-terephthalate)/maleated thermoplastic starch blown films. Fibers Polym. 2016;17(10):1540–1549.
  • Kahvand F, Fasihi M. Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents. Int J Biol Macromol. 2020;157:359–367.
  • Hu X, Jia X, Zhi C, et al. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydr Polym. 2019;210:204–209.
  • Ortega F, Giannuzzi L, Arce VB, et al. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll. 2017;70:152–162. https://doi.org/http://dx.doi.org/10.1016/j.foodhyd.2017.03.036.
  • Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12(1):1–39.
  • Asim M, Saba N, Jawaid M, et al. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. Sustain Compos Aerosp Appl. 2018. https://doi.org/http://dx.doi.org/10.1016/B978-0-08-102131-6.00012-8.
  • García NL, Famá L, D’Accorso NB, et al. Biodegradable starch nanocomposites. In: Thakur VK, Thakur MK, editors. Eco-friendly polymer nanocomposites: processing and properties. New Delhi: Springer India; 2015. p. 17–77.
  • Qiao R, Catherine Brinson L. Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol. 2009;69(3–4):491–499. https://doi.org/http://dx.doi.org/10.1016/j.compscitech.2008.11.022.
  • Mohseni MS, Khalilzadeh MA, Mohseni M, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films. Biocatal Agric Biotechnol. 2020;25:101569.
  • González K, Guaresti O, Palomares T, et al. The role of cellulose nanocrystals in biocompatible starch-based clicked nanocomposite hydrogels. Int J Biol Macromol. 2020;143:265–272.
  • Olad A, Doustdar F, Gharekhani H. Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf A Physicochem Eng Asp. 2020;601:124962.
  • Bahrami M, Amiri MJ, Bagheri F. Optimization of crystal violet adsorption by chemically modified potato starch using response surface methodology. Pollution. 2020;6:159–170.
  • Luchese CL, Benelli P, Spada JC, et al. Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. J Appl Polym Sci. 2018;135:1–11.
  • Nordin N, Othman SH, Rashid SA, et al. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll. 2020;106:105884.
  • Lin Q, Ji N, Li M, et al. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocoll. 2020;104:105760.
  • Stasi E, Giuri A, Ferrari F, et al. Biodegradable carbon-based ashes/maize starch composite films for agricultural applications. Polymers (Basel). 2020;12(3):524–516.
  • Blanco J, Iglesias J, Morales G, et al. Comparative life cycle assessment of glucose production from maize starch and woody biomass residues as a feedstock. Appl Sci. 2020;10:1–14.
  • Gonzalez-Calderon JA, Vallejo-Montesinos J, Martínez-Martínez HN, et al. Effect of chemical modification of titanium dioxide particles via silanization under properties of chitosan/potato-starch films. RevMexIngQuim. 2019;18(3):913–927.
  • Yassaroh Y, Woortman AJJ, Loos K. A new way to improve physicochemical properties of potato starch. Carbohydr Polym. 2019;204:1–8.
  • Trinh KS, Nguyen TL. Electron beam irradiated maize starch: changes in structural, physico- chemical properties, and digestibility. Order. 2020;7:119–124.
  • Sun L, Wang DM, Sun WJ, et al. Two-stage semi-continuous 2-keto-gluconic acid (2KGA) production by Pseudomonas plecoglossicida JUIM01 from rice starch hydrolyzate. Front Bioeng Biotechnol. 2020;8:1–10.
  • Said NS, Sarbon NM. Response surface methodology (RSM) of chicken skin gelatin based composite films with rice starch and curcumin incorporation. Polym Test. 2020;81:106161.
  • Zhang L, Zeng L, Wang X, et al. The influence of konjac glucomannan on the functional and structural properties of wheat starch. Food Sci Nutr. 2020;8(6):2959–2967.
  • Do MH, Lee HB, Lee E, et al. The effects of gelatinized wheat starch and high salt diet on gut microbiota and metabolic disorder. Nutrients. 2020;12(2):301–314.
  • Khairuddin N, Muhamad II, Abd Rahman WAW, et al. Physicochemical and thermal characterization of hydroxyethyl cellulose - wheat starch based films incorporated thymol intended for active packaging. JSM. 2020;49(2):323–333.
  • Saraphirom P, Phonphuak N, Chainamom N, et al. Utilization of lactic acid rich medium and cassava starch wastewater for biological hydrogen production. Int J GEOMATE. 2020;19(72):173–179.
  • Riyajan SA, Chantawee K. Cassava starch composite based films for encapsulated neem: effect of carboxylated styrene-butadiene rubber coating. Food Packag Shelf Life. 2020;23:100438.
  • Xu X, Liu H, Duan S, et al. A novel pumpkin seeds protein-pea starch edible film: mechanical, moisture distribution, surface hydrophobicity, UV-barrier properties and potential application. Mater Res Express. 2019;6:12.
  • Anukam AI, Berghel J, Frodeson S, et al. Characterization of pure and blended pellets made from Norway spruce and pea starch: a comparative study of bonding mechanism relevant to quality. Energies. 2019;12:22.
  • Martins da Costa JC, Lima Miki KS, da Silva Ramos A, et al. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon. 2020;6(4):e03718.
  • Ulyarti U, Lavlinesia L, Nuzula N, et al. Sifat fungsional pati ubi kelapa kuning (dioscorea alata) dan pemanfaatannya sebagai pengental pada saus tomat. agriTECH. 2019;38(3):235.
  • Tian B, Wang C, Lan W, et al. Granule size and distribution of raw and germinated oat starch in solid state and ethanol solution. Int J Food Prop. 2016;19(3):709–719. https://doi.org/http://dx.doi.org/10.1080/10942912.2014.923908.
  • Punia S, Sandhu KS, Dhull SB, et al. Oat starch: physico-chemical, morphological, rheological characteristics and its applications - a review. Int J Biol Macromol. 2020;154:493–498.
  • Hamunyela MH, Nepolo E, Emmambux MN. Proximate and starch composition of marama (Tylosema esculentum) storage roots during an annual growth period. S Afr J Sci. 2020;116:1–6.
  • Nain V, Kaur M, Sandhu KS, et al. Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. Int J Biol Macromol. 2020;162:24–30.
  • Zhang S, Zhu J, Liu Y, et al. Hierarchical structure and thermal property of starch-based nanocomposites with different amylose/amylopectin ratio. Polymers (Basel). 2019;11(2):342.
  • Maciel CC, Rodrigues JS, Freitas A. D, et al. Estudo da propriedade antimicrobiana de especiarias em filmes de amido: Uma proposta experimental study of antimicrobial property of spices in starch films: an experimental estudo da propriedade antimicrobiana de especiarias em filmes de amido: Uma pro. Rev Virtual Química. 2020;12:1–8.
  • van der Vlist J. Polymerization of hyperbrached polysaccharides by combined biocatalysis (thesis). 2011.
  • Denardin CC, da Silva LP. Starch granules structure and its regards with physicochemical properties. Cienc Rural. 2009;39(3):945–954.
  • Russell PL. Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J Cereal Sci. 1987;6(2):133–145.
  • Liu H, Xie F, Yu L, et al. Thermal processing of starch-based polymers. Prog Polym Sci. 2009;34(12):1348–1368.
  • Xu Y, Rehmani N, Alsubaie L, et al. Tapioca starch active nanocomposite films and their antimicrobial effectiveness on ready-to-eat chicken meat. Food Packag Shelf Life. 2018;16:86–91.
  • Ivanič F, Jochec-Mošková D, Janigová I, et al. Physical properties of starch plasticized by a mixture of plasticizers. Eur Polym J. 2017;93:843–849.
  • Abdullah ZW, Dong Y. Recent advances and perspectives on starch nanocomposites for packaging applications. J Mater Sci. 2018;53(22):15319–15339.
  • Esmaeili M, Pircheraghi G, Bagheri R. Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polym Int. 2017;66(6):809–819.
  • González K, Iturriaga L, González A, et al. Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. Eur Polym J. 2020;123:109415.
  • Kaushik A, Kaur R. Thermoplastic starch nanocomposites reinforced with cellulose nanocrystals: effect of plasticizer on properties. Compos Interfaces. 2016;23(7):701–717.
  • Mansour G, Zoumaki M, Marinopoulou A, et al. Investigation on the effects of glycerol and clay contents on the structure and mechanical properties of maize starch nanocomposite films. Starch ‐ Stärke. 2020;72(3–4):1900166.
  • Basiak E, Lenart A, Debeaufort F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers (Basel). 2018;10(4):412.
  • Franco MJ, Martin Jr AA, LFB, et al. Effect of plasticizer and modified starch on biodegradable films for strawberry protection. J.Food Process. Preserv. 2017;41:1–9.
  • Ervina Efzan MN, Siti SN. A review on effect of nanoreinforcement on mechanical properties of polymer nanocomposites. SSP. 2018;280:284–293.
  • Nieto-Suaza L, Acevedo-Guevara L, Sánchez LT, et al. Characterization of aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Struct. 2019;22:100131.
  • Ibrahim MM, Moustafa H, El Rahman ENA, et al. Reinforcement of starch based biodegradable composite using Nile rose residues. J Mater Res Technol. 2020;9(3):6160–6171.
  • Cerqueira JC, Da Silva Penha J, Oliveira RS, et al. Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polimeros. 2017;27(4):320–329.
  • Balakrishnan P, Gopi S, Geethamma VG, et al. Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative studies on reinforcing efficiency on starch nanocomposites. Macromol Symp. 2018;380:1–7.
  • Cheng G, Zhou M, Wei YJ, et al. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polym Compos. 2019;40:E365–E372.
  • Li JL, Zhou M, Cheng G, et al. Comparison of mechanical reinforcement effects of cellulose nanofibers and montmorillonite in starch composite. Starch/Staerke. 2019:71:1–2.
  • Ramezani H, Behzad T, Bagheri R. Synergistic effect of graphene oxide nanoplatelets and cellulose nanofibers on mechanical, thermal, and barrier properties of thermoplastic starch. Polym Adv Technol. 2020;31(3):553–565.
  • Garcia NL, Ribba L, Dufresne A, et al. Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng. 2009;294(3):169–177.
  • Nasseri R, Mohammadi N. Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym. 2014;106:432–439. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2014.01.029.
  • Dai H, Sheng X, An L, et al. Preparation and properties of thermoplastic starch/montmorillonite nanocomposites using N,N-bis(2-hydroxyethyl)formamide as a new additive hongguang. Polym Compos. 2012;33(2):225–231.
  • Prasad V, Shaikh AJ, Kathe AA, et al. Functional behaviour of paper coated with zinc oxide-soluble starch nanocomposites. J Mater Process Technol. 2010;210(14):1962–1967. https://doi.org/http://dx.doi.org/10.1016/j.jmatprotec.2010.07.009.
  • Rahman MAA, Mahmud S, Karim Alias A, et al. Effect of nanorod zinc oxide on electrical and optical properties of starch-based polymer nanocomposites. J Phys Sci. 2013;24:17–28.
  • Ortega F, García MA, Arce VB. Nanocomposite films with silver nanoparticles synthesized in situ: effect of corn starch content. Food Hydrocoll. 2019:97.
  • Mahmoud ME, Nabil GM, Zaki MM, et al. Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water. Int J Biol Macromol. 2019;137:455–468.
  • Shahbazi M, Rajabzadeh G, Sotoodeh S. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes. Int J Biol Macromol. 2017;104(Pt A):597–605. https://doi.org/http://dx.doi.org/10.1016/j.ijbiomac.2017.06.031.
  • Mallakpour S, Khodadadzadeh L. Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrason Sonochem. 2018;40(Pt A):402–409. https://doi.org/http://dx.doi.org/10.1016/j.ultsonch.2017.07.033.
  • Mallakpour S, Rashidimoghadam S. Starch/MWCNT-vitamin C nanocomposites: electrical, thermal properties and their utilization for removal of methyl orange. Carbohydr Polym. 2017;169:23–32. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2017.03.081.
  • Baishya P, Maji TK. Studies on the physicochemical properties of modified starch-based wood nanocomposites. Starch/Staerke. 2016;68(3–4):249–257.
  • Medeiros ES, Dufresne A, Orts W. Starch-based nanocomposites. In: Bertolini AC, editor. Starches: characterization, properties, and applications. Boca Raton, FL: Taylor &Francis; 2010. p. 205–251.
  • Santana JS, Rosário Jm D, Pola CC, et al. Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal. J Appl Polym Sci. 2017;134:1–9.
  • Cao X, Chen Y, Chang PR, et al. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett. 2008;2(7):502–510.
  • Cao X, Chen Y, Chang PR, et al. Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci. 2008;109(6):3804–3810.
  • Le Corre D, Bras J, Dufresne A. Starch nanoparticles: a review. Biomacromolecules. 2010;11(5):1139–1153.
  • Olatunji O. Classification of natural polymers. In: Olatunji O, editor. Natural polymers: industry techniques and applications. New York: Springer; 2015. p. 1–17.
  • Babaee M, Jonoobi M, Hamzeh Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym. 2015;132:1–8.
  • Angellier H, Molina-Boisseau S, Dole P, et al. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules. 2006;7(2):531–539.
  • Swain SK, Patra SK, Kisku SK. Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites sarat. Polym Compos. 2014;35(7):1238–1243.
  • Zhang QX, Yu ZZ, Xie XL, et al. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer (Guildf). 2007;48(24):7193–7200.
  • Aouada FA, Mattoso LHC, Longo E. A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: structural, mechanical, and thermal characterizations. J Thermoplast Compos Mater. 2013;26(1):109–124.
  • Aouada FA, Mattoso LHC, Longo E. New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites. Ind Crops Prod. 2011;34(3):1502–1508.
  • Xie F, Pollet E, Halley PJ, et al. Starch-based nano-biocomposites. Prog Polym Sci. 2013;38(10–11):1590–1628.
  • Goudarzi V, Shahabi-Ghahfarrokhi I. Photo-producible and photo-degradable starch/TiO2 bionanocomposite as a food packaging material: development and characterization. Int J Biol Macromol. 2018;106:661–669. https://doi.org/http://dx.doi.org/10.1016/j.ijbiomac.2017.08.058.
  • Coelho CCDS, Silva RBS, Carvalho CWP, et al. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int J Biol Macromol. 2020;159:1048–1061.
  • Montero B, Rico M, Rodríguez-Llamazares S, et al. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym. 2017;157:1094–1104. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2016.10.073.
  • Balakrishnan P, Geethamma VG, Gopi S, et al. Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via green crosslinker. Int J Biol Macromol. 2019;134:781–790.
  • Li J, Zhou M, Cheng G, et al. Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydr Polym. 2019;210:429–436.
  • Avérous L, Halley PJ. Biocomposites based on plasticized starch. Biofuels Bioprod Bioref. 2009;3(3):329–343.
  • Ghanbari A, Tabarsa T, Ashori A, et al. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biol Macromol. 2018;112:442–447.
  • Gutiérrez TJ, Alvarez VA. Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll. 2018;77:407–420.
  • Nessi V, Falourd X, Maigret JE, et al. Cellulose nanocrystals-starch nanocomposites produced by extrusion: structure and behavior in physiological conditions. Carbohydr Polym. 2019:225:115123.
  • Campos-Requena VH, Rivas BL, Pérez MA, et al. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − in vivo antimicrobial synergy over botrytis cinerea. Postharvest Biol Technol. 2017;129:29–36. https://doi.org/http://dx.doi.org/10.1016/j.postharvbio.2017.03.005.
  • Fourati Y, Magnin A, Putaux JL, et al. One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers. Carbohydr Polym. 2020:229:115554.
  • Liu W, Wang Z, Liu J, et al. Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocoll. 2020;108:106006.
  • López OV, Castillo LA, Barbosa SE, et al. Processing–properties–applications relationship of nanocomposites based on thermoplastic corn starch and talc. Polym Compos. 2018;39(4):1331–1338.
  • Castillo LA, López OV, García MA, et al. Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon. 2019;5(6):e01877.
  • López OV, Villanueva ME, Copello GJ, et al. Flexible thermoplastic starch films functionalized with copper particles for packaging of food products. Funct Compos Mater. 2020;1:1–17.
  • Nezami S, Sadeghi M, Mohajerani H. A novel pH-sensitive and magnetic starch-based nanocomposite hydrogel as a controlled drug delivery system for wound healing. Polym Degrad Stab. 2020;179:109255.
  • Meena SA. Study of structural and electrical properties of Ag-starch nanocomposites. Integr Ferroelectr. 2017;184:158–165.
  • Yousefi AR, Savadkoohi B, Zahedi Y, et al. Fabrication and characterization of hybrid sodium montmorillonite/TiO2 reinforced cross-linked wheat starch-based nanocomposites. Int J Biol Macromol. 2019;131:253–263.
  • Tibolla H, Pelissari FM, Martins JT, et al. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: in vitro cytotoxicity assessment. Carbohydr Polym. 2019;207:169–179.
  • Issa AT, Schimmel KA, Worku M, et al. Sweet potato starch-based nanocomposites: development, characterization, and biodegradability. Starch ‐ Stärke. 2018;70(7–8):1700273.
  • Merino D, Gutiérrez TJ, Mansilla AY, et al. Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: study on their interactions with water and light. ACS Sustain Chem Eng. 2018;6(11):15662–15672.
  • Motamedi E, Motesharezedeh B, Shirinfekr A, et al. Synthesis and swelling behavior of environmentally friendly starch-based superabsorbent hydrogels reinforced with natural char nano/micro particles. J Environ Chem Eng. 2020;8:103583.
  • American Society for Testing and Materials (ASTM). Standard test methods for tensile properties of thin plastic sheeting, method D882-10. Annu B ASTM Stand. 2010;87:3–5.
  • American Society for Testing and Materials. ASTM D638-14, standard practice for preparation of metallographic specimens. ASTM Int. 2016;82:1–15.
  • Zhang R, Cheng M, Wang X, et al. Food hydrocolloids bioactive mesoporous nano-silica/potato starch fi lms against molds commonly found in post-harvest white mushrooms. Food Hydrocoll. 2019;95:517–525.
  • Domene-López D, Delgado-Marín JJ, García-Quesada JC, et al. Electroconductive starch/multi-walled carbon nanotube films plasticized by 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym. 2020;229:115545.
  • Zheng P, Ma T, Ma X. Fabrication and properties of starch-grafted graphene nanosheet/plasticized-starch composites. Ind Eng Chem Res. 2013;52(39):14201–14207.
  • Forouzandehdel S, Forouzandehdel S, Rezghi Rami M. Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery. Carbohydr Res. 2020;487:107889.
  • Sousa ACC, Romo AIB, Almeida RR, et al. Starch-based magnetic nanocomposite for targeted delivery of hydrophilic bioactives as anticancer strategy. Carbohydr Polym. 2021;264:118017.
  • Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, et al. Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem Eng J. 2015;259:620–629.
  • Salehi H, Mehrasa M, Bijan N-N, et al. Effects of nanozeolite/starch thermoplastic hydrogels on wound healing. J Res Med Sci. 2017;22(1):110.
  • Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B, et al. Measurement methodology toward determination of structure-property relationships in acrylic hydrogels with starch and nanogold designed for biomedical applications. Meas J Int Meas Confed. 2020;156:107608.
  • Dehghan-Baniani D, Zahedifar P, Bagheri R, et al. Curcumin-loaded starch micro/nano particles for biomedical application: the effects of preparation parameters on release profile. Starch/Staerke. 2019;71:1–13.
  • Nallasamy P, Ramalingam T, Nooruddin T, et al. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: antimicrobial, antibiofilm and neuroprotective studies. Process Biochem. 2020;92:355–364.
  • Olsson DC, Schiochet G, Ampessan J, et al. Avaliação Da resposta cicatricial À aplicação dérmica De scaffold a base De amido aditivado Em feridas cirúrgicas De oryctolagus cuniculus Em modelo experimental. Rev Ci Vet Saúde Pub. 2018;5(1):025.
  • Ansarizadeh M, Haddadi SA, Amini M, et al. Sustained release of CIP from TiO2-PVDF/starch nanocomposite mats with potential application in wound dressing. J Appl Polym Sci. 2020;137(30):48916–48911.
  • Das A, Bhattacharyya S, Uppaluri R, et al. Optimality of poly-vinyl alcohol/starch/glycerol/citric acid in wound dressing applicable composite films. Int J Biol Macromol. 2020;155:260–272.
  • Hadisi Z, Nourmohammadi J, Nassiri SM. The antibacterial and anti-inflammatory investigation of lawsonia inermis-gelatin-starch nano-fibrous dressing in burn wound. Int J Biol Macromol. 2018;107(Pt B):2008–2019. https://doi.org/http://dx.doi.org/10.1016/j.ijbiomac.2017.10.061.
  • Meira SMM, Zehetmeyer G, Werner JO, et al. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017;63:561–570. https://doi.org/http://dx.doi.org/10.1016/j.foodhyd.2016.10.013.
  • Iamareerat B, Singh M, Sadiq MB, et al. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J Food Sci Technol. 2018;55(5):1953–1959.
  • Sani IK, Geshlaghi SP, Pirsa S, et al. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll. 2021;117:106719.
  • Arezoo E, Mohammadreza E, Maryam M, et al. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol. 2020;157:743–751.
  • Syafiq R, Sapuan SM, Zuhri MRM. Antimicrobial activity, physical, mechanical and barrier properties of sugar palm based nanocellulose/starch biocomposite films incorporated with cinnamon essential oil. J Mater Res Technol. 2021;11:144–157.
  • Silveira MP, Silva HC, Pimentel IC, et al. Development of active cassava starch cellulose nanofiber-based films incorporated with natural antimicrobial tea tree essential oil. J Appl Polym Sci. 2020;137(21):48726–48711.
  • López-Chavez MC, Osorio-Revilla G, Arellano-Cárdenas S, et al. Preparation of starch/clay/glycerol nanocomposite films and their FTIR, XRD, SEM and mechanical characterizations. Rev Mex Ing Química. 2013;16:793–804.
  • Balakrishnan P, Sreekala MS, Geethamma VG, et al. Physicochemical, mechanical, barrier and antibacterial properties of starch nanocomposites crosslinked with pre-oxidised sucrose. Ind Crops Prod. 2019;130:398–408.
  • Zhang S, Zhao H. Preparation and properties of zein-rutin composite nanoparticle/corn starch films. Carbohydr Polym. 2017;169:385–392. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2017.04.044.
  • Klaic R, Giroto AS, Guimarães GGF, et al. Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Miner Eng. 2018;128:230–237.
  • Mallakpour S, Nouruzi N. Application of vitamin B1-Coated carbon nanotubes for the production of starch nanocomposites with enhanced structural, optical, thermal and cd(II) adsorption properties. J Polym Environ. 2018;26(7):2954–2963. https://doi.org/http://dx.doi.org/10.1007/s10924-018-1177-8.
  • Mansour G, Zoumaki M, Marinopoulou A, et al. Characterization and properties of non-granular thermoplastic starch — clay biocomposite films. Carbohydrate Polymers 2020:245.
  • Farajpour R, Djomeh ZE, Moeini S, et al. Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. Int J Biol Macromol. 2020;149:941–950.
  • Fang Y, Fu J, Tao C, et al. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. Sci Total Environ. 2019;8:1350–1358.
  • Shapi'i RA, Othman SH, Nordin N, et al. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: in vitro and in vivo evaluation. Carbohydr Polym. 2020;230:115602.
  • Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int J Biol Macromol. 2017;95:306–313. https://doi.org/http://dx.doi.org/10.1016/j.ijbiomac.2016.11.065.
  • Ilyas RA, Sapuan SM, Ibrahim R, et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga Pinnata (wurmb.) merr) starch. J Mater Res Technol. 2019;8(5):4819–4830.
  • Ilyas RA, Sapuan SM, Ishak MR, et al. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym. 2018;202:186–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.