409
Views
6
CrossRef citations to date
0
Altmetric
Articles

Fabrication of homogeneously-aligned nano-fillers encapsulated silk fibroin electrospun nanofibers for improved fibroblast attachment, epithelialization, and collagen depositions: in vitro and in vivo wound healing evaluation

, , , , &
Pages 878-899 | Received 11 Nov 2021, Accepted 28 Dec 2021, Published online: 20 Jan 2022

References

  • Bhattacharya S, Mishra R. Pressure ulcers: Current understanding and newer modalities of treatment. Indian J Plast Surg. 2015;48(1):4–16.
  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610.
  • Memic A, Abudula T, Mohammed HS, et al. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater. 2019;2(3):952–969.
  • Shariati A, Moradabadi A, Azimi T, et al. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci Rep. 2020;10(1):9.
  • Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706.
  • Hatcher H, Planalp R, Cho J, et al. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–1652.
  • Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57(13):2889–2895.
  • Wang TY, Chen JX. Effects of curcumin on vessel formation insight into the pro-and antiangiogenesis of curcumin. Evid Based Complement Alternat Med. 2019;2019:1390795.
  • Chen Y, Lu Y, Lee RJ, et al. Nano encapsulated curcumin: and its potential for biomedical applications. Int J Nanomedicine. 2020;15:3099–3120.
  • Alven S, Nqoro X, Aderibigbe BA. Polymer-based materials loaded with curcumin for wound healing applications. Polymers. 2020;12(10):2225–2286.
  • Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1(1):56–64.
  • Chen S, Liu B, Carlson MA, et al. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond). 2017;12(11):1335–1352.
  • Nguyen TP, Nguyen QV, Nguyen V, et al. Silk Fibroin-Based biomaterials for biomedical. Polymers. 2019;11(12):1925–1933.
  • Qasim SB, Zafar MS, Najeeb S, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. IJMS. 2018;19(2):407.
  • Lowe B, Hardy JG, Walsh LJ. Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega. 2020;5(1):1–9.
  • Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-past, present, and future in bone regeneration. Bone Tissue Regen Insights. 2016;7:BTRI.S36138.
  • Saleem M, Rasheed S, Yougen C. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Sci Technol Adv Mater. 2020;21(1):242–266.
  • Lian Y, Zhan JC, Zhang KH, et al. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold. Front Mater Sci. 2014;8(4):354–362.
  • Shababdoust A, Ehsani M, Shokrollahi P, et al. Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity. Prog Biomater. 2018;7(1):23–33.
  • Ranjeth Kumar Reddy T, Kim HJ. Mechanical, optical, thermal, and barrier properties of poly (lactic acid)/curcumin composite films prepared using Twin-Screw extruder. Food Biophys. 2019;14(1):22–29.
  • Shefa AA, Sultana T, Park MK, et al. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater Des. 2020;186:108313.
  • Tsekova PB, Spasova MG, Manolova NE, et al. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2017;73:206–214.
  • Zhou Y, Yao H, Wang J, et al. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int J Nanomedicine. 2015;10:3203–3215.
  • Panman MR, Bakker BH, Den Uyl D, et al. Water lubricates hydrogen-bonded molecular machines. Nat Chem. 2013;5(11):929–934.
  • Wang C, Wang J, Zeng L, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules. 2019;24(5):834.
  • Merrell JG, Mclaughlin SW, Tie L, et al. Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 2009;36(12):1149–1156.
  • Wang C, Ma C, Wu Z, et al. Enhanced bioavailability and anticancer effect of Curcumin-Loaded electrospun nanofiber: in vitro and in vivo study. Nanoscale Res Lett. 2015;10(1):1–10.
  • Govindaraju R, Karki R, Chandrashekarappa J, et al. Enhanced water dispersibility of curcumin encapsulated in Alginate-Polysorbate 80 nano particles and bioavailability in healthy human volunteers. Pharm Nanotechnol. 2019;7(1):39–56.
  • Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Controlled Release. 2015;220:584–591.
  • Vilchez A, Acevedo F, Cea M, et al. Applications of electrospun nanofibers with antioxidant properties: a review. Nanomaterials. 2020;10(1):175.
  • Jakubczyk K, Drużga A, Katarzyna J, et al. Antioxidant potential of curcumin—a Meta-analysis of randomized clinical trials. Antioxidants. 2020;9(11):1013–1092.
  • Borra SK, Gurumurthy P, Mahendra J. Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J Med Plant Res. 2013;7:2680–2690.
  • Zhang H, Li L. L, Dai F. y, et al. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. J Transl Med. 2012;10(1):117.
  • Ming J, Zuo B. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers. Mater Chem Phys. 2012;137(1):421–427.
  • Bich VT, Thuy NT, Binh NT, et al. Structural and spectral properties of curcumin and metal-curcumin complex derived from turmeric (curcuma longa). Springer Proceeding Phys. 2009;127:271–278.
  • Kim MH, Kim BS, Lee J, et al. Silk fibroin/hydroxyapatite composite hydrogel induced by gamma-ray irradiation for bone tissue engineering. Biomater Res. 2017;21(1):9.
  • Wang SD, Ma Q, Wang K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS Omega. 2018;3(1):406–413.
  • Van Nong H, Hung LX, Thang PN, et al. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma Longa) rhizomes of the Northern Vietnam. SpringerPlus. 2016;5(1):1147.
  • Saeed SM, Mirzadeh H, Zandi M, et al. Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog Biomater. 2017;6(1-2):39–48.
  • Fereydouni N, Movaffagh J, Amiri N, et al. Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Sci Rep. 2021;11(1):15.
  • Ranjbar-Mohammadi M, Kargozar S, Bahrami SH, et al. Fabrication of curcumin-loaded gum tragacanth/poly(vinyl alcohol) nanofibers with optimized electrospinning parameters. J Ind Text. 2017;46(5):1170–1192.
  • Perumal G, Pappuru S, Chakraborty D, et al. Synthesis and characterization of curcumin loaded PLA-hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C Mater Biol Appl. 2017;76:1196–1204.
  • Faralli A, Shekarforoush E, Ajalloueian F, et al. In vitro permeability enhancement of curcumin across caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr Polym. 2019;206:38–47.
  • Sidhu GS, Mani H, Gaddipati JP, et al. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen. 1999;7(5):362–374.
  • Mitic A, Todorovic K, Stojiljkovic N, et al. Beneficial effects of curcumin on the wound-healing process after tooth extraction. Nat Prod Commun. 2017;12(12):1934578X1701201–1934578X1701908.
  • Jagetia GC, Rajanikant GK. Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gamma-irradiation. Plast Reconstr Surg. 2005;115(2):515–528.
  • Mohammadi Z, Sharif Zak M, Majdi H, et al. The effect of chrysin-curcumin-loaded nanofibres on the wound-healing process in male rats. Artif Cells Nanomed Biotechnol. 2019;47(1):1642–1652.
  • Golchin A, Hosseinzadeh S, Jouybar A, et al. Wound healing improvement by curcumin-loaded electrospun nanofibers and BFP-MSCs as a bioactive dressing. Polym Adv Technol. 2020;31(7):1519–1531.
  • Zhao Y, Dai C, Wang Z, et al. A novel curcumin-loaded composite dressing facilitates wound healing due to its natural antioxidant effect. Drug Des Devel Ther. 2019;13:3269–3280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.