180
Views
5
CrossRef citations to date
0
Altmetric
Article

In situ synthesis and characterization of colloidal AuNPs capped nano-chitosan containing poly(2,5-dimethoxyaniline) nanocomposites for biomedical applications

, , , &
Pages 1083-1101 | Received 14 Jan 2022, Accepted 07 Feb 2022, Published online: 18 Feb 2022

References

  • Sengani M, Grumezescu AM, Rajeswari VD. Recent trends and methodologies in gold nanoparticle synthesis – a prospective review on drug delivery aspect. OpenNano. 2017;2:37–46.
  • Vo KDN, Kowandy C, Dupont L, et al. Radiation synthesis of chitosan stabilized gold nanoparticles comparison between e- beam and γ irradiation. Radiat Phys Chem. 2014;94:84–87.
  • Negm NA, Hefni HHH, Abd-Elaal AAA, et al. Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol. 2020;152:681–702.
  • Eltaweil AS, Omer AM, El-Aqapa HG, et al. Chitosan based adsorbents for the removal of phosphate and nitrate: a critical review. Carbohydr Polym. 2021;274:118671.
  • Omer AM, Abd El-Monaem EM, Abd El-Latif MM, et al. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohydr Polym. 2021;265:118084.
  • Bakshi PS, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int J Biol Macromol. 2020;150:1072–1083.
  • Antoniou J, Liu F, Majeed H, et al. Physicochemical and morphological properties of size-controlled chitosan-tripolyphosphate nanoparticles. Colloids Surf, A. 2015;465:137–146.
  • Vo KDN, Guillon E, Dupont L, et al. Influence of Au(III) interactions with chitosan on gold nanoparticle formation. J Phys Chem C. 2014;118:4465–4474.
  • Phan TTV, Phan DT, Cao XT, et al. Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications. Nanomaterials. 2021;11:1–15.
  • Potara M, Maniu D, Astilean S. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology. 2009;20(31):315602–315607.
  • Huang H, Yuan Q, Yang X. Morphology study of gold-chitosan nanocomposites. J Colloid Interface Sci. 2005;282(1):26–31.
  • Huang H, Yang X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules. 2004;5(6):2340–2346.
  • Mohandoss S, Palanisamy S, Priya VV, et al. Excitation-dependent multiple luminescence emission of nitrogen and sulfur co-doped carbon dots for cysteine sensing, bioimaging, and photoluminescent ink applications. Microchem J. 2021;167:106280.
  • Sonaimuthu M, Nerthigan Y, Swaminathan N, et al. Photoluminescent hydrophilic cyclodextrin-stabilized cysteine-protected copper nanoclusters for detecting lysozyme. Anal Bioanal Chem. 2020;412(26):7141–7154.
  • Mohandoss S, Atchudan R, Edison TNJI, et al. Rapid response and highly selective sensing of adenosine based on novel photoluminescent vanadium nanoclusters anchored on MoS2 nanosheets. Sensors Actuat, B: Chem. 2020;306:127581.
  • Mohandoss S, Maniyazagan M, Stalin T. A highly selective dual mode detection of Fe3+ ion sensing based on 1,5-dihydroxyanthraquinone in the presence of β-cyclodextrin . Mater Sci Eng C Mater Biol Appl. 2015;48:94–102.
  • Mohandoss S, Sivakamavalli J, Vaseeharan B, et al. Fluorometric sensing of Pb2+ and CrO42- ions through host-guest inclusion for human lung cancer live cell imaging. RSC Adv. 2015;5(123):101802–101818.
  • Sakthi Velu K, Anandha Raj J, Sathappan P, et al. Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett. 2019;240:132–135.
  • Mohandoss S, Stalin T. Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1,2-dihydroxyanthraquinones. Photochem Photobiol Sci. 2017;16(4):476–488.
  • Sonaimuthu M, Balakrishnan SB, Kuppu SV, et al. Spectral and proton transfer behavior of 1,4-dihydroxylanthraquinone in aqueous and confined media; molecular modelling strategy. J Mol Liq. 2018;259:186–198.
  • Mohandoss S, Atchudan R, Immanuel Edison TNJ, et al. Enhanced solubility of guanosine by inclusion complexes with cyclodextrin derivatives: Preparation, characterization, and evaluation. Carbohydr Polym. 2019;224:115166.
  • Mohandoss S, Edison TNJI, Atchudan R, et al. Ultrasonic-assisted efficient synthesis of inclusion complexes of salsalate drug and β-cyclodextrin derivatives for potent biomedical applications. J Mol Liq. 2020;319:114358.
  • Mohandoss S, Palanisamy S, You SG, et al. Ultrasonication-assisted host–guest inclusion complexes of β-cyclodextrins and 5-hydroxytryptophan: enhancement of water solubility, thermal stability, and in vitro anticancer activity. J Mol Liq. 2021;336:116172.
  • Mohandoss S, Stalin T. A new fluorescent PET sensor probe for Co2+ ion detection: computational, logic device and living cell imaging applications. RSC Adv. 2017;7(27):16581–16593.
  • Mohandoss S, Sivakamavalli J, Vaseeharan B, et al. Host-guest molecular recognition based fluorescence on-off-on chemosensor for nanomolar level detection of Cu2+ and Cr2O72- ions: Application in XNOR logic gate and human lung cancer living cell imaging. Sensors and Actuators, B: Chemical. 2016;234:300–315.
  • Çolak N, Sökmen B. Doping of chemically synthesized polyaniline. Des Monomers Polym. 2000;3(2):181–189.
  • Huang KS, Sheu YR, Chao IC. Preparation and properties of nanochitosan. Polym Plast Technol Eng. 2009;48(12):1239–1243.
  • Iqbal M, Usanase G, Oulmi K, et al. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater Res Bull. 2016;79:97–104.
  • Sakai T, Alexandridis P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J Phys Chem B. 2005;109(16):7766–7777.
  • Alonso MJ, Calvo P, Remun C. Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–132.
  • Lai C, Liu X, Qin L, et al. Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim Acta. 2017;184(7):2097–2105.
  • Chen Z, Zhang C, Tan Y, et al. Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta. 2015;182(3-4):611–616.
  • Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev. 2007;107(11):4797–4862.
  • Muthukrishnan AM. Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. J Nanomed Nanotechnol. 2015;6(1):5.
  • Dang Nguyen Vô K, Kowandy C, Dupont L, et al. Evidence of chitosan-mediated reduction of Au(iii) to Au(0) nanoparticles under electron beam by using OH˙ and e⁻(aq) scavengers. Chem Commun (Camb)). 2015;51(19):4017–4020.
  • Jin Y, Li Z, Hu L, et al. Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym. 2013;91(1):152–156.
  • Devasenan S, Beevi NH, Jayanthi SS, et al. Synthesis and characterization of silver nanoparticles by using glycerol and their antimicrobial activity. J Chem Pharmaceut Res. 2016;8:314–319.
  • Hosny M, Fawzy M. Instantaneous phytosynthesis of gold nanoparticles via persicaria salicifolia leaf extract, and their medical applications. Adv Powder Technol. 2021;32(8):2891–2904.
  • Lee ST, Mi FL, Shen YJ, et al. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer. 2001;42(5):1879–1892.
  • Hosseini SF, Zandi M, Rezaei M, et al. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym. 2013;95(1):50–56.
  • Pandiselvi K, Thambidurai S. Synthesis, characterization, and antimicrobial activity of chitosan-zinc oxide/polyaniline composites. Mater Sci Semicond Process. 2015;31:573–581.
  • Noruzi M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng. 2015;38(1):1–14.
  • Wei D, Qian W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B Biointerfaces. 2008;62(1):136–142.
  • K V, Bm D, Pn S. Synthesis, characterization and applications of nanochitosan/sodium alginate/microcrystalline cellulose film. J Nanomed Nanotechnol. 2016;07(06):1–11.
  • Abrica-González P, Zamora-Justo JA, Sotelo-López A, et al. Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers. Nanoscale Res Lett. 2019;14(1):1–14.
  • Gaabour LH. Spectroscopic and thermal analysis of polyacrylamide/chitosan (PAM/CS) blend loaded by gold nanoparticles. Results Phys. 2017;7:2153–2158.
  • Senthilkumar M, Manisankar P. Synthesis of poly (2, 5-dimethoxyaniline) -SnO 2 nanocomposites and their structural, optical and electrochemical properties. J Indian Chem Soc. 2019;96:81–84.
  • Bragg WH, Bragg WL. The reflection of X-rays by crystals. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character. 1913. 88:p. 428–438.
  • Lomelí-Marroquín D, Cruz DM, Nieto-Argüello A, et al. Starch-mediated synthesis of Mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomedicine. 2019;14:2171–2190.
  • Basik M, Mobin M, Shoeb M. Cysteine-silver-gold nanocomposite as potential stable green corrosion inhibitor for mild steel under acidic condition. Sci Rep. 2020;10(1):12.
  • Barabadi H, Honary S, Ali Mohammadi M, et al. Green chemical synthesis of gold nanoparticles by using penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of echinococcus granulosus. Environ Sci Pollut Res. 2017;24(6):5800–5810.
  • Wang G, Morrin A, Li M, et al. Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J Mater Chem B. 2018;6(25):4173–4190.
  • Botteon CEA, Silva LB, Ccana-Ccapatinta GV, et al. Biosynthesis and characterization of gold nanoparticles using brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep. 2021;11(1):16.
  • Boomi P, Ganesan R, Prabu Poorani G, et al. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine. 2020;15:7553–7568.
  • Omer AM, Tamer TM, Khalifa RE, et al. Formulation and antibacterial activity evaluation of quaternized aminochitosan membrane for wound dressing applications. Polymers. 2021;13(15):2428.
  • Senthilkumar M, Pandimurugan R, Palanisamy S, et al. Facile synthesis of metal nanoparticle-loaded polymer nanocomposite with highly efficient an optically enhanced biocidal and anticancer agents. J Biomater Sci Polym Ed. 2021;32(17):2210–2226.
  • Velsankar K, Parvathy G, Mohandoss S, et al. Celosia argentea leaf extract-mediated green synthesized iron oxide nanoparticles for bio-applications. J Nanostruct Chem. 2021.
  • K V, S S, P M, et al. Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of capsicum frutescens. J Environ Chem Eng. 2021;9(5):106299.
  • Park JH, Li C, Hu W, et al. Antioxidant and free radical scavenging activity of different fractions from hawthorn fruit. J Food Sci Nutrit. 2010;15:44–50.
  • El-Borady OM, Fawzy M, Hosny M. Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl Nanosci. 2021.
  • Chaiwong N, Leelapornpisid P, Jantanasakulwong K, et al. Antioxidant and moisturizing properties of carboxymethyl chitosan with different molecular weights. Polymers. 2020;12(7):1445.
  • Martínez-Torres AC, Zarate-Triviño DG, Lorenzo-Anota HY, et al. Chitosan gold nanoparticles induce cell death in hela and MCF-7 cells through reactive oxygen species production. Int J Nanomedicine. 2018;13:3235–3250.
  • Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond)). 2011;6(4):715–728.
  • Hosny M, Fawzy M, Abdelfatah AM, et al. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Adv Powder Technol. 2021;32(9):3220–3233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.