181
Views
1
CrossRef citations to date
0
Altmetric
Article

Preparation and characterization of electrospun polycaprolactone/brushite scaffolds to promote osteogenic differentiation of mesenchymal stem cells

, , , &
Pages 1102-1122 | Received 10 Oct 2021, Accepted 10 Feb 2022, Published online: 24 Feb 2022

References

  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.
  • De Witte T-M, Fratila-Apachitei LE, Zadpoor AA, et al. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5(4):197–211.
  • Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev. 2018;58(1):164–207.
  • Asadi-Eydivand M, Solati-Hashjin M, Shafiei SS, et al. Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing. PloS One. 2016;11(3):e0151216.
  • Hankenson K, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45:S8–S15.
  • Hutmacher DW, Williams D. Scaffolds in tissue engineering bone and cartilage. In The Biomaterials: Silver Jubilee Compendium. New York, NY: Elsevier; 2006.
  • Tohidlou H, Shafiei SS, Abbasi S, et al. Amine-functionalized single-walled carbon nanotube/polycaprolactone electrospun scaffold for bone tissue engineering: in vitro study. Fibers Polym. 2019;20(9):1869–1882.
  • Baniahmad F, Yousefi S, Rabiee M, et al. Alendronate sodium intercalation in layered double hydroxide/poly(ε-caprolactone): application in osteoporosis treatment. Iran J Biotechnol. 2021;19(1):48–59.
  • ShiraliPour F, Shafiei SS, Nikakhtar Y. Three-dimensional porous poly (epsilon-caprolactone)/beta-tricalcium phosphate microsphere-aggregated scaffold for bone tissue engineering. Int J Appl Ceram Technol. 2021;18(5):1442–1456.
  • Eskandari N, Shafiei SS. Fabrication and evaluation of layered double Hydroxide-Enriched ß-Tricalcium phosphate nanocomposite granules for bone regeneration: in vitro study. Mol Biotechnol. 2021;63(6):477–490.
  • Unosson J, Engqvist H. Development of a resorbable calcium phosphate cement with load bearing capacity. Bioceram Dev Appl. 2014;4(1):1000074.
  • Yuan T, Zhang L, Li K, et al. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2014;102(2):337–344.
  • Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28(4):192–202.
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5(1):1–20.
  • Sahni V, Tibrewal S, Bissell L, et al. The role of tissue engineering in achilles tendon repair: a review. Curr Stem Cell Res Ther. 2015;10(1):31–36.
  • Taghavi MA, Rabiee SM, Jahanshahi M, et al. Electrospun poly-ε-caprolactone (PCL)/dicalcium phosphate dihydrate (DCPD) composite scaffold for tissue engineering application. Mol Biotechnol. 2019;61(5):345–354.
  • Sharma S, Sudhakara P, Singh J, et al. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers. 2021;13(16):2623.
  • Rodrigues AA, Batista NA, Malmonge SM, et al. Osteogenic differentiation of rat bone mesenchymal stem cells cultured on poly (hydroxybutyrate-co-hydroxyvalerate), poly (ε-caprolactone) scaffolds. J Mater Sci: Mater Med. 2021;32(11):1–13.
  • Vimalraj S, Arumugam B, Miranda P, et al. Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015;78:202–208.
  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56.
  • Phadke A, Hwang Y, Kim SH, et al. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater. 2013;25:114–129.
  • Eskandari N, Shafiei SS, Dehghan MM, et al. In vivo evaluation of bone regeneration behavior of novel β‐tricalcium phosphate/layered double hydroxide nanocomposite granule as bone graft substitutes. J Biomed Mater Res Part B: Appl Biomater. 2021.
  • Mittwede PN, Gottardi R, Alexander PG, et al. Clinical applications of bone tissue engineering in orthopedic trauma. Curr Pathobiol Rep. 2018;6(2):99–108.
  • El-Rashidy AA, El Moshy S, Radwan IA, et al. Effect of polymeric matrix stiffness on osteogenic differentiation of mesenchymal stem/progenitor cells: concise review. Polymers. 2021;13(17):2950.
  • Farzadi A, Solati-Hashjin M, Bakhshi F, et al. Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram Int. 2011;37(1):65–71.
  • Kokubo T, Takadama H. Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants. In Handbook of Biomineralization: Biological Aspects and Structure Formation. Hoboken, NJ: Wiley; 2007. pp. 97–109.
  • Pfaffl MW, Bruckmaier RM, editors. DNA array and real-time PCR—an optimal combination! The use of real-time (kinetic) quantitative PCR to validate cDNA array results. Array meeting: COST B20: Mammary development, function and cancer on 10th and 11th of May in Utrecht; 2002.
  • Rao SH, Harini B, Shadamarshan RPK, et al. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol. 2018;110:88–96.
  • Wagner ER, Luther G, Zhu G, et al. Defective osteogenic differentiation in the development of osteosarcoma. Sarcoma. 2011;2011:1–12.
  • Ahmadian A, Shafiee A, Aliahmad N, et al. Overview of nano-fiber mats fabrication via electrospinning and morphology analysis. Textiles. 2021;1(2):206–226.
  • Mohammadi S, Shafiei SS, Asadi-Eydivand M, Ardeshir M, et al. Graphene oxide-enriched poly (ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. J Bioactive Compatible Polym. 2017;32(3):325–342.
  • Gandolfi MG, Zamparini F, Degli Esposti M, et al. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Mater Sci Eng: C. 2019;102:341–361.
  • Ruckh TT, Kumar K, Kipper MJ, et al. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds. Acta Biomater. 2010;6(8):2949–2959.
  • Fadaie M, Mirzaei E, Geramizadeh B, et al. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym. 2018;199:628–640.
  • Lakatos É, Magyar L, Bojtár I. Material properties of the mandibular trabecular bone. J Med Eng. 2014;2014:470539.
  • Chudinova EA, Surmeneva MA, Timin AS, Karpov TE, et al. Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles. Colloids Surf B Biointerfaces. 2019;176:130–139.
  • Wang W, Huang B, Byun JJ, et al. Assessment of PCL/carbon material scaffolds for bone regeneration. J Mech Behav Biomed Mater. 2019;93:52–60.
  • Ye K, Liu D, Kuang H, et al. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci. 2019;534:625–636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.