1,519
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Comparative review of piezoelectric biomaterials approach for bone tissue engineering

, , , , , , , , , , & show all
Pages 1555-1594 | Received 28 Jan 2022, Accepted 08 Apr 2022, Published online: 23 May 2022

References

  • Wang H, Zhu H, Guo Q, et al. Overlapping mechanisms of peripheral nerve regeneration and angiogenesis following sciatic nerve transection. Front Cell Neurosci. 2017;11:323.
  • Salati MA, Khazai J, Tahmuri AM, et al. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polymers. 2020;12(5):1150.
  • Juhas M, Abutaleb N, Wang JT, et al. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nat Biomed Eng. 2018;2(12):942–954.
  • Bai X, Gao M, Syed S, et al. Bioactive hydrogels for bone regeneration. Bioact Mater. 2018;3(4):401–417.
  • Jouyandeh M, Vahabi H, Rabiee N, et al. Green composites in bone tissue engineering. Emerg Mater. 2021.
  • Mirzaei A, Moghadam AS, Abazari MF, et al. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. J Cell Physiol. 2019;234(10):17854–17862.
  • Ribeiro C, Correia DM, Rodrigues I, et al. In vivo demonstration of the suitability of piezoelectric stimuli for bone reparation. Mater Lett. 2017;209:118–121.
  • Jeong H-G, Han Y-S, Jung K-H, et al. Poly(vinylidene fluoride) composite nanofibers containing polyhedral oligomeric silsesquioxane–epigallocatechin gallate conjugate for bone tissue regeneration. Nanomaterials. 2019;9(2):184.
  • Ibrahim DM, Sani ES, Soliman AM, et al. Bioactive and elastic nanocomposites with antimicrobial properties for bone tissue regeneration. ACS Appl Bio Mater. 2020;3(5):3313–3325.
  • Fazzalari N. Bone fracture and bone fracture repair. Osteoporos Int. 2011;22(6):2003–2006.
  • Saburi E, Islami M, Hosseinzadeh S, et al. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on graphene oxide-modified nanofibers. Gene. 2019;696:72–79.
  • Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66–84.
  • Ribeiro C, Correia DM, Ribeiro S, et al. Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Eng Life Sci. 2015;15(4):351–356.
  • Zarrintaj P, Jouyandeh M, Ganjali MR, et al. Thermo-sensitive polymers in medicine: a review. Eur Polym J. 2019;117:402–423.
  • Titorencu I, Albu MG, Nemecz M, et al. Natural polymer-cell bioconstructs for bone tissue engineering. Curr Stem Cell Res Ther. 2017;12(2):165–174.
  • Mora-Boza A, García-Fernández L, Barbosa FA, et al. Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration. Carbohydr Polym. 2020;241:116269.
  • Manouchehri S, Bagheri B, Rad SH, et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog Org Coat. 2019;131:389–396.
  • Seidi F, Khodadadi Yazdi M, Jouyandeh M, et al. Chitosan-based blends for biomedical applications. Int J Biol Macromol. 2021;183:1818–1850.
  • Teotia AK, Gupta A, Raina DB, et al. Gelatin-modified bone substitute with bioactive molecules enhance cellular interactions and bone regeneration. ACS Appl Mater Interfaces. 2016;8(17):10775–10787.
  • García-García P, Reyes R, Pérez-Herrero E, et al. Alginate-hydrogel versus alginate-solid system. Efficacy in bone regeneration in osteoporosis. Mater Sci Eng C. 2020;115:111009.
  • Bi S, Wang P, Hu S, et al. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydr Polym. 2019;224:115176.
  • Yavari SA, van der Stok J, Chai YC, et al. Bone regeneration performance of surface-treated porous titanium. Biomaterials. 2014;35(24):6172–6181.
  • Wu T, Li B, Wang W, et al. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater Sci. 2020;8(16):4603–4615.
  • Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Multifunctional 3D hierarchical bioactive green carbon-based nanocomposites. ACS Sustain Chem Eng. 2021;9(26):8706–8720.
  • Mohammadkhah M, Marinkovic D, Zehn M, et al. A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone. 2019;127:544–555.
  • Jacob J, More N, Kalia K, et al. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regener. 2018;38(1):1–11.
  • Samadi A, Hasanzadeh R, Azdast T, et al. Piezoelectric performance of microcellular polypropylene foams fabricated using foam injection molding as a potential scaffold for bone tissue engineering. J Macromol Sci Part B. 2020;59(6):376–389.
  • Samadi A, Pourahmad S. Flexible piezoelectric cum‐electromagnetic‐absorbing multifunctional nanocomposites based on electrospun poly(vinylidene fluoride) incorporated with synthesized porous core‐shell nanoparticles. Int J Energy Res. 2020;44(13):10087–10100.
  • Zhao Z-H, Ye MY, Ji HM, et al. Enhanced piezoelectric properties and strain response in <001> textured BNT-BKT-BT ceramics. Mater Des. 2018;137:184–191.
  • Xiang H, Chen Z, Yang J. Electronic and piezoelectric properties of BN nanotubes from hybrid density functional method. J Comput Theor Nanosci. 2006;3(5):838–842.
  • Goel S, Sinha N, Yadav H, et al. Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater Chem Phys. 2017;202:56–64.
  • Gorodzha SN, Muslimov AR, Syromotina DS, et al. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces. 2017;160:48–59.
  • Cuong NT, Barrau S, Dufay M, et al. On the nanoscale mapping of the mechanical and piezoelectric properties of poly (L-lactic acid) electrospun nanofibers. Appl Sci. 2020;10(2):652.
  • Rincón-Iglesias M, Lizundia E, Correia DM, et al. The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. Cellulose. 2020;27(7):3821–3834.
  • Ma YT, Ma SY, Tang J, et al. One-pot hydrothermal method synthesised SnS/rGO nanocomposite under PVDF bonding for high-performance acetone gas sensor. Mater Sci Eng: B. 2021;263:114861.
  • Yang T, Pan H, Tian G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy. 2020;72:104706.
  • Deng W, Yang T, Jin L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy. 2019;55:516–525.
  • Chamankar N, Khajavi R, Yousefi AA, et al. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram Int. 2020;46(12):19669–19681.
  • Sahoo R, Mishra S, Ramadoss A, et al. An approach towards the fabrication of energy harvesting device using Ca-doped ZnO/PVDF-TrFE composite film. Polymer. 2020;205:122869.
  • Ansarizadeh M, Haddadi SA, Amini M, et al. Sustained release of CIP from TiO2‐PVDF/starch nanocomposite mats with potential application in wound dressing. J Appl Polym Sci. 2020;137(30):48916.
  • Augustine R, Dan P, Sosnik A, et al. Electrospun poly (vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017;10(10):3358–3376.
  • Xin Y, Sun H, Tian H, et al. The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: a brief review. Ferroelectrics. 2016;502(1):28–42.
  • Rabiee N, Ahmadi S, Rabiee M, et al. Green carbon-based nanocomposite biomaterials through the lens of microscopes. Emerg Mater. 2021.
  • Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Turning toxic nanomaterials into a safe and bioactive nanocarrier for Co-delivery of DOX/pCRISPR. ACS Appl Bio Mater. 2021;4(6):5336–5351.
  • Kapat K, Shubhra QTH, Zhou M, et al. Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Adv Funct Mater. 2020;30(44):1909045.
  • Wang D, Jang J, Kim K, et al. "Tree to Bone": lignin/polycaprolactone nanofibers for hydroxyapatite biomineralization. Biomacromolecules. 2019;20(7):2684–2693.
  • Seal B, Otero T, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng: R. Report. 2001;34(4-5):147–230.
  • Setiawati R, Rahardjo P. Bone development and growth. In: Osteogenesis and bone regeneration. London: IntechOpen; 2019; 1.
  • Seeley R, Stephens T, Tate P. Skeletal system: bones and bone tissue. Anatom Physiol. 2004;1:166–196.
  • Walker J. Skeletal system 1: the anatomy and physiology of bones. Nurs Time. 2020;116(2):38–42.
  • Clarke B. Normal bone anatomy and physiology. CJASN. 2008;3(Suppl. 3):S131–S139.
  • Jerez A, Mangione S, Abdala V. Occurrence and distribution of sesamoid bones in squamates: a comparative approach. Acta Zoologica. 2010;91(3):295–305.
  • Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater. 2019;8(4):223–215.
  • Schindeler A, McDonald MM, Bokko P, et al. Bone remodeling during fracture repair: the cellular picture. Semin Cell Develop Biol. 2008;19(5):459–466.
  • Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–1404.
  • Chang Y, Cho B, Kim S, et al. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med. 2019;51(5):1–8.
  • Petite H, Viateau V, Bensaïd W, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959–963.
  • Chen-Glasser M, Li P, Ryu J, et al. Piezoelectric materials for medical applications. In: Piezoelectricity-organic and inorganic materials and applications. UK: IntechOpen, 2018. p. 125–145.
  • Kao F-C, Chiu P-Y, Tsai T-T, et al. The application of nanogenerators and piezoelectricity in osteogenesis. Sci Technol Adv Mater. 2019;20(1):1103–1117.
  • Cerrolaza M, Duarte V, Garzón-Alvarado D. Analysis of bone remodeling under piezoelectricity effects using boundary elements. J Bionic Eng. 2017;14(4):659–671.
  • Pereira HF, Cengiz IF, Silva FS, et al. Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med. 2020;31(3):1–16.
  • Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019;12(4):568.
  • Aki D, Ulag S, Unal S, et al. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater Des. 2020;196:109094.
  • Yayla M, Cadirci E, Halici Z, et al. Regenerative effect of resorbable scaffold embedded boron-nitride/hydroxyapatite nanoparticles in rat parietal bone. J Nanosci Nanotechnol. 2020;20(2):680–691.
  • Belaid H, Nagarajan S, Barou C, et al. Boron nitride based nanobiocomposites: design by 3D printing for bone tissue engineering. ACS Appl Bio Mater. 2020;3(4):1865–1874.
  • Özmeriç A, Tanoğlu O, Ocak M, et al. Intramedullary implants coated with cubic boron nitride enhance bone fracture healing in a rat model. J Trace Elem Med Biol. 2020;62:126599.
  • Ozbek B, Erdogan B, Ekren N, et al. Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. J Aust Ceram Soc. 2018;54(2):251–260.
  • Wang C, Feng J, Zhou J, et al. Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride. J Mater Sci. 2020;55(29):14501–14515.
  • Polley C, Schulze S, Distler T, et al. Sintering behavior of 3D printed barium titanate composite scaffolds for bone repair. Trans Additive Manuf Meet Med. 2020;2(1):019.
  • Liu Z, Liang H, Shi T, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int. 2019;45(8):11079–11086.
  • Beladi F, Saber-Samandari S, Saber-Samandari S. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. Mater Sci Eng C Mater Biol Appl. 2017;75:385–392.
  • Zhang Z, Ma Z, Zhang Y, et al. Dehydrothermally crosslinked collagen/hydroxyapatite composite for enhanced in vivo bone repair. Colloids Surf B Biointerfaces. 2018;163:394–401.
  • Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595–9606.
  • Lu Y, Li M, Li L, et al. High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. Mater Sci Eng C Mater Biol Appl. 2018;82:225–233.
  • Ma B, Han J, Zhang S, et al. Hydroxyapatite nanobelt/polylactic acid janus membrane with osteoinduction/barrier dual functions for precise bone defect repair. Acta Biomater. 2018;71:108–117.
  • Zhao CQ, Xu XC, Lu YJ, et al. Doping lithium element to enhance compressive strength of β-TCP scaffolds manufactured by 3D printing for bone tissue engineering. J Alloys Compd. 2020;814:152327.
  • Watanabe T, Takabatake K, Tsujigiwa H, et al. Effect of honeycomb β-TCP geometrical structure on bone tissue regeneration in skull defect. Materials. 2020;13(21):4761.
  • Barbosa WT, de Almeida KV, de Lima GG, et al. Synthesis and in vivo evaluation of a scaffold containing wollastonite/β-TCP for bone repair in a rabbit tibial defect model. J Biomed Mater Res B Appl Biomater. 2020;108(3):1107–1116.
  • Kang J-H, Kaneda J, Jang J-G, et al. The influence of electron beam sterilization on in vivo degradation of β-TCP/PCL of different composite ratios for bone tissue engineering. Micromachines. 2020;11(3):273.
  • Bohner M, Santoni B, Döbelin N. β-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 2020;113:23–41.
  • Felice B, Sánchez MA, Socci MC, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2018;93:724–738.
  • Barua E, Deoghare AB, Chatterjee S, et al. Effect of ZnO reinforcement on the compressive properties, in vitro bioactivity, biodegradability and cytocompatibility of bone scaffold developed from bovine bone-derived HAp and PMMA. Ceram Int. 2019;45(16):20331–20345.
  • Shitole AA, Raut PW, Sharma N, et al. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J Mater Sci: Mater Med. 2019;30(5):1–17.
  • Zeeshan R, Mutahir Z, Iqbal H, et al. Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym. 2018;193:9–18.
  • Costa BC, Rodrigues EA, Tokuhara CK, et al. ZnO nanoparticles with different sizes and morphologies for medical implant coatings: Synthesis and cytotoxicity. BioNanoSci. 2018;8(2):587–595.
  • Lozano D, Gil-Albarova J, Heras C, et al. ZnO-mesoporous glass scaffolds loaded with osteostatin and mesenchymal cells improve bone healing in a rabbit bone defect. J Mater Sci: Mater Med. 2020;31(11):1–11.
  • Donnaloja F, Jacchetti E, Soncini M, et al. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12(4):905.
  • Kalkandelen C, Ulag S, Ozbek B, et al. 3D printing of gelatine/alginate/β‐tricalcium phosphate composite constructs for bone tissue engineering. ChemistrySelect. 2019;4(41):12032–12036.
  • Zhao R, Xu Z, Li B, et al. A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration. Biomed Mater. 2019;14(6):065007.
  • García-Honduvilla N, Coca A, Ortega MA, et al. Improved connective integration of a degradable 3D-nano-apatite/agarose scaffold subcutaneously implanted in a rat model. J Biomater Appl. 2018;33(5):741–752.
  • He J, Hu X, Cao J, et al. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr Polym. 2021;253:117198.
  • Zou Z, Wang L, Zhou Z, et al. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into chitosan/alginate hydrogels for efficient bone regeneration. Bioact Mater. 2021;6(6):1839–1851.
  • Zhang W, Wang X-C, Li X-Y, et al. A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering. Carbohydr Polym. 2020;236:116043.
  • Li Z, Du T, Ruan C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater. 2021;6(5):1491–1511.
  • Tsai S-W, Huang S-S, Yu W-X, et al. Collagen scaffolds containing hydroxyapatite-CaO fiber fragments for bone tissue engineering. Polymers. 2020;12(5):1174.
  • Liu H, Lin M, Liu X, et al. Doping bioactive elements into a collagen scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioact Mater. 2020;5(4):844–858.
  • Najafloo R, Baheiraei N, Imani R. Synthesis and characterization of collagen/calcium phosphate scaffolds incorporating antibacterial agent for bone tissue engineering application. J Bioactive Compat Polym. 2021;36(1):29–43.
  • Wang L, Pathak JL, Liang D, et al. Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int J Biol Macromol. 2020;142:366–375.
  • Vedakumari SW, Jayalakshmi R, Sanjayan CG, et al. Fabrication of microcomposites based on silk sericin and monetite for bone tissue engineering. Polym Bull. 2020;77(1):475–481.
  • Xing X, Cheng G, Yin C, et al. Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. Arabian J Chem. 2020;13(5):5526–5538.
  • Dellaquila A, Greco G, Campodoni E, et al. Optimized production of a high‐performance hybrid biomaterial: biomineralized spider silk for bone tissue engineering. J Appl Polym Sci. 2020;137(22):48739.
  • Luetchford KA, Chaudhuri JB, Paul A. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Mater Sci Eng: C. 2020;106:110116.
  • Velioglu ZB, Pulat D, Demirbakan B, et al. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connect Tissue Res. 2019;60(3):274–282.
  • Tan W, Gao C, Feng P, et al. Dual-functional scaffolds of poly (L-lactic acid)/nanohydroxyapatite encapsulated with metformin: Simultaneous enhancement of bone repair and bone tumor inhibition. Mater Sci Eng: C. 2021;120:111592.
  • Mao D, Li Q, Li D, et al. Fabrication of 3D porous poly (lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Mater Des. 2018;142:1–10.
  • Chuan D, Fan R, Wang Y, et al. Stereocomplex poly (lactic acid)-based composite nanofiber membranes with highly dispersed hydroxyapatite for potential bone tissue engineering. Compos Sci Technol. 2020;192:108107.
  • Farzamfar S, Naseri-Nosar M, Sahrapeyma H, et al. Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polymer Biomater. 2019;68(8):472–479.
  • Pahlevanzadeh F, Bakhsheshi-Rad H, Hamzah E. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. J Mech Behav Biomed Mater. 2018;82:257–267.
  • Chen Y, Xu J, Huang Z, et al. An innovative approach for enhancing bone defect healing using PLGA scaffolds seeded with extracorporeal-shock-wave-treated bone marrow mesenchymal stem cells (BMSCs). Sci Rep. 2017;7(1):1–13.
  • Minardi S, Fernandez-Moure JS, Fan D, et al. Biocompatible PLGA-mesoporous silicon microspheres for the controlled release of BMP-2 for bone augmentation. Pharmaceutics. 2020;12(2):118.
  • Babilotte J, Martin B, Guduric V, et al. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Mater Sci Eng: C. 2021;118:111334.
  • Chen L, Shao L, Wang F, et al. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019;9(19):10494–10507.
  • Yuan Z, Wei P, Huang Y, et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater. 2019;85:294–309.
  • Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207–219.
  • Zou F, Jiang J, Lv F, et al. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu (I)@ ZIF-8 nanocomposite scaffolds for infected bone repair. J Nanobiotechnol. 2020;18(1):1–14.
  • Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J. 2019;362:269–279.
  • Wang W, Huang B, Bártolo P. 3.4 Assessment of PCL/carbon material scaffolds for bone regenration. Design, modelling and fabrication of polycaprolactone electro-active scaffolds for tissue engineering, 2020, 133.
  • Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl. 2017;78:324–332.
  • Heydari Z, Mohebbi-Kalhori D, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;81:127–132.
  • Shahrezaee M, Salehi M, Keshtkari S, et al. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine. 2018;14(7):2061–2073.
  • Türkkan S, Pazarçeviren AE, Keskin D, et al. Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2017;80:484–493.
  • Perumal G, Sivakumar PM, Nandkumar AM, et al. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Mater Sci Eng: C. 2020;109:110527.
  • Sadat-Shojai M, Khorasani M-T, Jamshidi A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J. 2016;289:38–47.
  • Degli Esposti M, Chiellini F, Bondioli F, et al. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Mater Sci Eng C Mater Biol Appl. 2019;100:286–296.
  • Gredes T, Gedrange T, Hinüber C, et al. Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration. Ann Anat. 2015;199:36–42.
  • Paula AC, Carvalho PH, Martins TM, et al. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions. Mater Sci Eng: C. 2020;107:110301.
  • Chen Z, Song Y, Zhang J, et al. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;72:341–351.
  • Tahmasebi A, Shapouri Moghadam A, Enderami SE, et al. Aloe vera-derived gel-blended PHBV nanofibrous scaffold for bone tissue engineering. Asaio J. 2020;66(8):966–973.
  • Nahanmoghadam A, Asemani M, Goodarzi V, et al. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. J Biomed Mater Res A. 2021;109(6):981–993.
  • Kara A, Gunes OC, Albayrak AZ, et al. Fish scale/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous composite scaffolds for bone regeneration. J Biomater Appl. 2020;34(9):1201–1215.
  • Kheiri Mollaqasem V, Asefnejad A, Nourani MR, et al. Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core‐shell nanofibers as bone tissue scaffold. J Appl Polym Sci. 2021;138(6):49797.
  • Kaniuk Ł, Krysiak ZJ, Metwally S, et al. Osteoblasts and fibroblasts attachment to poly (3-hydroxybutyric acid-co-3-hydrovaleric acid)(PHBV) film and electrospun scaffolds. Mater Sci Eng: C. 2020;110:110668.
  • Aslankoohi N, Mondal D, Rizkalla AS, et al. Bone repair and regenerative biomaterials: towards recapitulating the microenvironment. Polymers. 2019;11(9):1437.
  • Wei H, Cui J, Lin K, et al. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10(1):1–19.
  • Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 2015;24:12–23.
  • Khare D, Basu B, Dubey A. Electrically stimulated piezoelectric biomaterials as next generation implants for orthopedic applications. Biomaterials. 2020;258:120280.
  • Tandon B, Blaker JJ, Cartmell SH. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 2018;73:1–20.
  • Zheng T, Huang Y, Zhang X, et al. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B. 2020;8(45):10221–10256.
  • Chernozem RV, Guselnikova O, Surmeneva MA, et al. Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth. Appl Mater Today. 2020;20:100758.
  • Chernozem RV, Surmeneva MA, Shkarina SN, et al. Piezoelectric 3-D fibrous poly(3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering: inorganic phase formation, osteoblast cell adhesion, and proliferation. ACS Appl Mater Interfaces. 2019;11(21):19522–19533.
  • Poon KK, Wurm MC, Evans DM, et al. Biocompatibility of (Ba, Ca)(Zr, Ti) O3 piezoelectric ceramics for bone replacement materials. J Biomed Mater Res. 2020;108(4):1295–1303.
  • Liu W, Yang D, Wei X, et al. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep. J Biomater Appl. 2020;35(4-5):544–552.
  • Shokrollahi H, Salimi F, Doostmohammadi A. The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery. J Mech Behav Biomed Mater. 2017;74:365–370.
  • Saeidi B, Derakhshandeh MR, Delshad Chermahini M, et al. Novel porous barium titanate/nano-bioactive glass composite with high piezoelectric coefficient for bone regeneration applications. J Mater Eng Perform. 2020;29(8):5420–5427.
  • Tariverdian T, Behnamghader A, Brouki Milan P, et al. 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceram Int. 2019;45(11):14029–14038.
  • Polley C, Distler T, Detsch R, et al. 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials. 2020;13(7):1773.
  • Tang Y, Wu C, Wu Z, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci Rep. 2017;7(1):1–12.
  • Jiao H, Song S, Zhao K, et al. Synthesis and properties of porous piezoelectric BT/PHBV composite scaffold. J Biomater Sci Polym Ed. 2020;31(12):1552–1565.
  • Ehterami A, Kazemi M, Nazari B, et al. Fabrication and characterization of highly porous barium titanate based scaffold coated by gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. J Mech Behav Biomed Mater. 2018;79:195–202.
  • Manohar CS, Kumar BS, Sadhu SPP, et al. Novel lead-free biocompatible piezoelectric hydroxyapatite (HA)–BCZT (Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3) nanocrystal composites for bone regeneration. Nanotechnol Rev. 2019;8(1):61–78.
  • Zhang Y, Chen L, Zeng J, et al. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Mater Sci Eng: C. 2014;39:143–149.
  • Sikder P, Koju N, Lin B, et al. Conventionally sintered hydroxyapatite–barium titanate piezo-biocomposites. Trans Indian Inst Met. 2019;72(8):2011–2018.
  • Verma AS, Sharma A, Kumar A, et al. Multifunctional response of piezoelectric sodium potassium niobate (NKN)-toughened hydroxyapatite-based biocomposites. ACS Appl Bio Mater. 2020;3(8):5287–5299.
  • Chen W, Yu Z, Pang J, et al. Fabrication of biocompatible potassium sodium niobate piezoelectric ceramic as an electroactive implant. Materials. 2017;10(4):345.
  • Yao T, Chen J, Wang Z, et al. The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. Colloids Surf B Biointerfaces. 2019;175:463–468.
  • Chen C, Zhu Y, Ji J, et al. Fabrication and performance of porous lithium sodium potassium niobate ceramic. Mater Res Express. 2018;5(2):025404.
  • Wang Q, Yang J, Zhang W, et al. Manufacture and cytotoxicity of a lead-free piezoelectric ceramic as a bone substitute-consolidation of porous lithium sodium potassium niobate by cold isostatic pressing. Int J Oral Sci. 2009;1(2):99–104.
  • Reizabal A, Brito-Pereira R, Fernandes MM, et al. Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia. 2020;12:100709.
  • Wan C, Bowen CR. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. J Mater Chem A. 2017;5(7):3091–3128.
  • Shepelin NA, Glushenkov AM, Lussini VC, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci. 2019;12(4):1143–1176.
  • Gimenes R, Zaghete MA, Bertolini M, et al. Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In: Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), 2004. International Society for Optics and Photonics.
  • Martins P, Lopes A, Lanceros-Mendez S. Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci. 2014;39(4):683–706.
  • Martins P, Costa CM, Benelmekki M, et al. On the origin of the electroactive poly (vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm. 2012;14(8):2807–2811.
  • Samadi A, Ahmadi R, Hosseini SM. Influence of TiO2-Fe3O4-MWCNT hybrid nanotubes on piezoelectric and electromagnetic wave absorption properties of electrospun PVDF nanocomposites. Org Electron. 2019;75:105405.
  • Mokhtari F, Latifi M, Shamshirsaz M. Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. J Textile Inst. 2015;107(8):1–1055.
  • Guillot-Ferriols M, Rodríguez-Hernández JC, Correia DM, et al. Poly (vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Mater Sci Eng: C. 2020;117:111281.
  • Zhang J, Liu D, Han Q, et al. Mechanically stretchable piezoelectric polyvinylidene fluoride (PVDF)/boron nitride nanosheets (BNNSs) polymer nanocomposites. Compos Part B Eng. 2019;175:107157.
  • Soin N. Magnetic nanoparticles—piezoelectric polymer nanocomposites for energy harvesting. in Magnetic nanostructured materials. 2018. Netherland: Elsevier. p. 295–322.
  • Sencadas V, Lanceros-Méndez S, Mano J. Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochim Acta. 2004;424(1–2):201–207.
  • Samadi A, Hosseini SM, Mohseni M. Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Org Electron. 2018;59:149–155.
  • Abazari MF, Soleimanifar F, Enderami SE, et al. Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation. J Cell Biochem. 2019;120(10):16750–16759.
  • Azadian E, Arjmand B, Ardeshirylajimi A, et al. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem. 2020;121(5-6):3185–3196.
  • Abazari MF, Soleimanifar F, Amini Faskhodi M, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet-rich plasma composite nanofibers. J Cell Physiol. 2020;235(2):1155–1164.
  • Augustine A, Augustine R, Hasan A, et al. Development of titanium dioxide nanowire incorporated poly (vinylidene fluoride–trifluoroethylene) scaffolds for bone tissue engineering applications. J Mater Sci: Mater Med. 2019;30(8):1–13.
  • Gimenes R, Zaghete MA, Espanhol M, et al. Promotion of bone repair of rabbit tibia defects induced by scaffolds of P(VDF-TrFE)/BaTiO3 P(VDF-TrFE)/BaTiO3 composites. Bull Mater Sci. 2019;42(5):1–6.
  • Hermenegildo B, Ribeiro C, Pérez-Álvarez L, et al. Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf B Biointerfaces. 2019;181:1041–1047.
  • Zhou Z, Yu P, Zhou L, et al. Polypyrrole nanocones and dynamic piezoelectric stimulation-induced stem cell osteogenic differentiation. ACS Biomater Sci Eng. 2019;5(9):4386–4392.
  • Kitsara M, Blanquer A, Murillo G, et al. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale. 2019;11(18):8906–8917.
  • Xi Y, Pan W, Xi D, et al. Optimization, characterization and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth. Drug Deliv. 2020;27(1):1378–1385.
  • Mirzaei A, Saburi E, Enderami SE, et al. Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. Artif Cells Nanomed Biotechnol. 2019;47(1):3058–3066.
  • Ahmadi N, Kharaziha M, Labbaf S. Core-shell fibrous membranes of PVDF-Ba0.9Ca0.1TiO3/PVA with osteogenic and piezoelectric properties for bone regeneration. Biomed Mater. 2019;15(1):015007.
  • Shuai C, Huang W, Feng P, et al. Tailoring properties of porous poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass. J Biomater Sci Polym Ed. 2016;27(1):97–109.
  • Dong Y, Suryani L, Zhou X, et al. Synergistic effect of PVDF-Coated PCL-TCP scaffolds and pulsed electromagnetic field on osteogenesis. IJMS. 2021;22(12):6438.
  • Fernandes MM, Correia DM, Ribeiro C, et al. Bioinspired three-dimensional magnetoactive scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(48):45265–45275.
  • Qi F, Zeng Z, Yao J, et al. Constructing core-shell structured BaTiO3@ carbon boosts piezoelectric activity and cell response of polymer scaffolds. Mater Sci Eng: C. 2021;126:112129.
  • Zhang C, Liu W, Cao C, et al. Modulating surface potential by controlling the β phase content in poly (vinylidene fluoridetrifluoroethylene) membranes enhances bone regeneration. Adv Healthcare Mater. 2018;7(11):1701466.
  • Shuai C, Zeng Z, Yang Y, et al. Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Mater Des. 2020;190:108564.
  • Shuai C, Liu G, Yang Y, et al. A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy. 2020;74:104825.
  • Damaraju SM, Wu S, Jaffe M, et al. Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed Mater. 2013;8(4):045007.
  • Szewczyk PK, Metwally S, Karbowniczek JE, et al. Surface-potential-controlled cell proliferation and collagen mineralization on electrospun polyvinylidene fluoride (PVDF) fiber scaffolds for bone regeneration. ACS Biomater Sci Eng. 2019;5(2):582–593.
  • Shuai C, Liu G, Yang Y, et al. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf B Biointerfaces. 2020;185:110587.
  • Li Y, Sun L, Webster TJ. The investigation of ZnO/poly(vinylidene fluoride) nanocomposites with improved mechanical, piezoelectric, and antimicrobial properties for orthopedic applications. J Biomed Nanotechnol. 2018;14(3):536–545.
  • Karimi S, Ghaee A, Barzin J. Preparation and characterization of a piezoelectric poly(vinylidene fluoride)/nanohydroxyapatite scaffold capable of naproxen delivery. Eur Polym J. 2019;112:442–451.
  • Bonadio TG, Freitas VF, Tominaga TT, et al. Polyvinylidene fluoride/hydroxyapatite/β-tricalcium phosphate multifunctional biocomposite: Potentialities for bone tissue engineering. Curr Appl Phys. 2017;17(5):767–773.
  • Rodrigues PJG, Elias CdMV, Viana BC, et al. Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds. J Mater Res. 2020;35(23–24):3265–3275.
  • Wu C, Tang Y, Mao B, et al. Rapid apatite induction of polarized hydrophilic HA/PVDF bio-piezoelectric coating on titanium surface. Surf Coat Technol. 2021;405:126510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.