792
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review

&
Pages 1704-1758 | Received 03 Mar 2022, Accepted 19 Apr 2022, Published online: 28 May 2022

References

  • Li WJ, Shanti RM, Tuan RS. Electrospinning technology for nanofibrous scaffolds in tissue engineering. In: Nanotechnologies for the Life Sciences. Switzerland: Springer Nature; 2007.
  • Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20:119–143.
  • Sowmya B, Hemavathi A, Panda P. Poly(ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Prog Biomater. 2021;10(2):91–27.
  • Roy T, Maity P, Rameshbabu A, et al. Core-shell nanofibrous scaffold based on polycaprolactone-silk fibroin emulsion electrospinning for tissue engineering applications. Bioengineering. 2018;5(3):68.
  • Awad HA, O'Keefe RJ, Lee CH, et al. Bone tissue engineering: clinical challenges and emergent advances in orthopedic and craniofacial surgery. In: Principles of tissue engineering. 2014. Massachusetts: Elsevier; p. 1733–1743.
  • Salifu AA, Lekakou C, Labeed FH. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed Mater Res A. 2017;105(7):1911–1926.
  • Ahmed S, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol. 2018;116:849–862.
  • Efremov L, Kanjevac T, Ciric D, et al. Perspectives on regeneration of alveolar bone defects. Ser J Exp Clin Res. 2013;14(4):145–153.
  • Lobb DC, DeGeorge BR Jr, Chhabra AB. Bone graft substitutes: current concepts and future expectations. J Hand Surg Am. 2019;44(6):497–505. e2.
  • Bow A, Anderson DE, Dhar M. Commercially available bone graft substitutes: the impact of origin and processing on graft functionality. Drug Metab Rev. 2019;51(4):533–544.
  • Godavitarne C, Robertson A, Peters J, et al. Biodegradable materials. Orthopaed Trauma. 2017;31(5):316–320.
  • Winkler T, Sass FA, Duda GN, et al. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res. 2018;7(3):232–243.
  • Nazeer MA, Yilgor E, Yilgor I. Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications. Polymer. 2019;168:86–94.
  • França DC, Bezerra EB, Morais DDdS, et al. Hydrolytic and thermal degradation of PCL and PCL/bentonite compounds. Mat Res. 2016;19(3):618–627.
  • Laha A, Sharma CS, Majumdar S. Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release. Mater Today: Proc. 2016;3(10):3484–3491.
  • Singh YP, Dasgupta S, Bhaskar R. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. J Biomater Sci Polym Ed. 2019;30(18):1756–1778.
  • Bello AB, Kim D, Kim D, et al. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020;26(2):164–180.
  • Yao R, He J, Meng G, et al. Electrospun PCL/gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J Biomater Sci Polym Ed. 2016;27(9):824–838.
  • Rong D, Chen P, Yang Y, et al. Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. JFB. 2016;7(1):6.
  • Ghasemi ML, Morshed M, Karbalaei K, et al. Electrospun poly(epsilon-caprolactone) nanofiber mat as extracellular matrix. 2008.
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering . Biomaterials. 2008;29(34):4532–4539.
  • Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019;12(4):568.
  • Wu X, Liu Y, Li X, et al. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 2010;6(3):1167–1177.
  • Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm. 2017;523(2):441–453.
  • Rocco KA, Maxfield MW, Best CA, et al. In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng Part B Rev. 2014;20(6):628–640.
  • Singh YP, Dasgupta S, Nayar S, et al. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. J Biomater Sci Polym Ed. 2020;31(6):781–803.
  • Gouma P-I, Ramachandran K. Electrospinning for bone tissue engineering. Recent Pat Nanotechnol. 2008;2(1):1–7.
  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–347.
  • Schiffman JD, Schauer CL. A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev. 2008;48(2):317–352.
  • Cipitria A, Skelton A, Dargaville TR, et al. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem. 2011;21(26):9419–9453.
  • Ajmal G, Bonde GV, Mittal P, et al. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: a potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm. 2019;567:118480.
  • Panda P, Sahoo B. Synthesis and applications of electrospun nanofibers-a review. Nanotechnology. 2013;1:399–416.
  • Naragund VS, Panda PK. Electrospinning of polyacrylonitrile nanofiber membrane for bacteria removal. J Mater Sci Appl. 2018;4:68–74.
  • Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009;5(8):2884–2893.
  • Titorencu I, Pruna V, Jinga VV, et al. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res. 2014;355(1):23–33.
  • Sisson K, Zhang C, Farach-Carson MC, et al. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A. 2010;94(4):1312–1320.
  • Zhang Y, Ouyang H, Lim CT, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72(1):156–165.
  • Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27(4):596–606.
  • Venugopal JR, Low S, Choon AT, et al. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008;32(5):388–397.
  • Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin–hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater. 2005;15(12):1988–1994.
  • Kim H-W, Kim H-E, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26(25):5221–5230.
  • Feng P, Niu M, Gao C, et al. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep. 2014;4(1):5599–5510.
  • Tarafder S, Balla VK, Davies NM, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering . J Tissue Eng Regen Med. 2013;7(8):631–641.
  • Ramakrishna S. An introduction to electrospinning and nanofibers. 2005. World Scientific.
  • Jun I, Han H-S, Edwards J, et al. Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. IJMS. 2018;19(3):745.
  • Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today (Kidlington). 2013;16(6):229–241.
  • Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117:100721.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Mater Sci Eng C Mater Biol Appl. 2018;86:83–94.
  • Yuan B, Zhou S-y, Chen X-s. Rapid prototyping technology and its application in bone tissue engineering. J Zhejiang Univ Sci B. 2017;18(4):303–315.
  • Naghieh S, Badrossamay M, Foroozmehr E, et al. Combination of PLA micro-fibers and PCL-gelatin nano-fibers for development of bone tissue engineering scaffolds. Int. J. Swarm Intell. Evol. Comput. 2017;6(1):1–4.
  • Mabrouk M, Beherei HH, Das DB. Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng: C. 2020;110:110716.
  • Saraf A, Baggett LS, Raphael RM, et al. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release. 2010;143(1):95–103.
  • Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013;8:337–350.
  • Güney E, Emir C, Altan D, et al. Development of biocomposite tissue scaffolds of collagen/gelatin/boron-doped bioactive glass prepared through solvent casting/particulate leaching method for bone tissue engineering. J. Indian Chem. Soc. 2020;97(10c):2006–2012.
  • Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian J Chem. 2018;11(8):1165–1188.
  • Dziemidowicz K, Sang Q, Wu J, et al. Electrospinning for healthcare: recent advancements. J Mater Chem B. 2021;9(4):939–951.
  • Wang X-X, Yu G-F, Zhang J, et al. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog Mater Sci. 2021;115:100704.
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–1211.
  • Li Y, BOU-AKL T. Electrospinning in tissue engineering. In Electrospinning: Material, techniques, and biomedical applications. London: IntechOpen; 2016, p. 117–139.
  • Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine. 2013;8:2997–3017.
  • He C, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B. 2014;2(45):7828–7848.
  • Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 2015;44(3):790–814.
  • Li H, Xu Y, Xu H, et al. Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery. J Mater Chem B. 2014;2(34):5492–5510.
  • Jiang T, Carbone EJ, Lo KW-H, et al. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci. 2015;46:1–24.
  • Haider S, Al-Zeghayer Y, Ahmed Ali FA, et al. Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res. 2013;20(4):1–11.
  • Pillay V, Dott C, Choonara YE, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. 2013;2013:1–22.
  • Okutan N, Terzi P, Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids. 2014;39:19–26.
  • Yikar E, Demir D, Bölgen N. Electrospinning of gelatin nanofibers: Effect of gelatin concentration on chemical, morphological and degradation characteristics. Turkish J Eng. 2021;5(4):171–176.
  • Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym Test. 2020;90:106647.
  • Chen X, Feng B, Zhu D-Q, et al. Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. Int J Nanomedicine. 2019;14:3669–3678.
  • Syrová Z, Mazel T, Chudoba J, et al. Study of silica-based electrospun nanofibers as a scaffold for human bone marrow mesenchymal stem cells. Proceedings of the NANOCON, 2015.
  • Li D, Wu T, He N, et al. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids Surf B Biointerfaces. 2014;121:432–443.
  • Lu W, Xu H, Zhang B, et al. The preparation of chitosan oligosaccharide/alginate sodium/gelatin nanofibers by spiral-electrospinning. J Nanosci Nanotechnol. 2016;16(3):2360–2364.
  • Dubský M, Kubinová S, Sirc J, et al. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med. 2012;23(4):931–941.
  • Jiménez-Saelices C, Seantier B, Cathala B, et al. Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels. J Sol-Gel Sci Technol. 2017;84(3):475–485.
  • Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30(15):2956–2965.
  • Maji K, Dasgupta S. Characterization and in vitro evaluation of gelatin–chitosan scaffold reinforced with bioceramic nanoparticles for bone tissue engineering. J Mater Res. 2019;34(16):2807–2818.
  • Murugan S, Parcha SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. J Mater Sci: Mater Med. 2021;32(8):1–10.
  • Garakani SS, Davachi SM, Bagher Z, et al. Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Int J Biol Macromol. 2020;164:356–370.
  • Huang Q, Liu Y, Ouyang Z, et al. Comparing the regeneration potential between PLLA/aragonite and PLLA/vaterite pearl composite scaffolds in rabbit radius segmental bone defects. Bioact Mater. 2020;5(4):980–989.
  • Kumar A, Mir SM, Aldulijan I, et al. Load-bearing biodegradable PCL-PGA-beta TCP scaffolds for bone tissue regeneration . J Biomed Mater Res B Appl Biomater. 2021;109(2):193–200.
  • Fereshteh Z. Freeze-drying technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds. 2018. Netherlands: Elsevier; p. 151–174.
  • Montanheiro TLdA, Schatkoski VM, de Menezes BRC, et al. Recent progress on polymer scaffolds production: Methods, main results, advantages and disadvantages. Express Polym Lett. 2022;16(2):197–219.
  • Gómez-Guillén MC, Giménez B, López-Caballero ME, et al. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids. 2011;25(8):1813–1827.
  • Gaspar-Pintiliescu A, Stefan LM, Anton ED, et al. Physicochemical and biological properties of gelatin extracted from marine snail rapana venosa. Mar Drugs. 2019;17(10):589.
  • Djagny KB, Wang Z, Xu S. Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr. 2001;41(6):481–492.
  • Zhao C, Xiao Y, Ling S, et al. Structure of collagen., in Fibrous proteins. 2021. New York: Springer; p. 17–25.
  • Alipal J, Pu'ad NM, Lee TC, et al. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater Today: Proc. 2021;42:240–250.
  • Hoque ME, Nuge T, Yeow TK, et al. Gelatin based scaffolds for tissue engineering-a review. Polym. Res. J. 2015;9(1):15.
  • Campiglio CE, Contessi Negrini N, Farè S, et al. Cross-linking strategies for electrospun gelatin scaffolds. Materials. 2019;12(15):2476.
  • Zhan J, Morsi Y, Ei-Hamshary H, et al. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Front Mater Sci. 2016;10(1):90–100.
  • Zhang YZ, Venugopal J, Huang Z-M, et al. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006;47(8):2911–2917.
  • Zhang S, Huang Y, Yang X, et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A. 2009;90(3):671–679.
  • Mohammadzadehmoghadam S, Dong Y. Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor. Front Mater. 2019;6:91.
  • Habibi S, Hajinasrollah K. Electrospinning of nanofibers based on chitosan/gelatin blend for antibacterial uses. Russ J Appl Chem. 2018;91(5):877–881.
  • Gui X, Hu J, Han Y. Random and aligned electrospun gelatin nanofiber mats for human mesenchymal stem cells. Mater Res Innovations. 2019;23(4):208–215.
  • Lu W, Ma M, Xu H, et al. Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett. 2015;140:1–4.
  • Wu S-C, Chang W-H, Dong G-C, et al. Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioactive Compat Polym. 2011;26(6):565–577.
  • Haugh MG, Jaasma MJ, O'Brien FJ. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J Biomed Mater Res A. 2009;89(2):363–369.
  • Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, et al. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces. 2009;1(1):218–223.
  • Zheng R, Duan H, Xue J, et al. The influence of gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials. 2014;35(1):152–164.
  • Yu Y, Xu S, Li S, et al. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci. 2021;9(5):1583–1597.
  • Gorczyca G, Tylingo R, Szweda P, et al. Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Carbohydr Polym. 2014;102:901–911.
  • Hasan MM, et al. Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Int J Biol Macromol. 2018;117:1110–1117.
  • Yan L-P, Wang Y-J, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A. 2010;95(2):465–475.
  • Chau DYS, Collighan RJ, Verderio EAM, et al. The cellular response to transglutaminase-cross-linked collagen. Biomaterials. 2005;26(33):6518–6529.
  • De Colli M, Massimi M, Barbetta A, et al. A biomimetic porous hydrogel of gelatin and glycosaminoglycans cross-linked with transglutaminase and its application in the culture of hepatocytes. Biomed Mater. 2012;7(5):055005.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19.
  • Lakshmikanthan AK. The design and development of osteoinductive and osteoconductive pre-vascularised 3D printed scaffolds with high porosity and load bearing properties for bone regeneration. 2018. NJ: Rutgers University-School of Graduate Studies.
  • Ouyang J, Deng Z, Chen K, et al. Cellular compatibility of a new tantalum-niobium Scaffold material. 2020.
  • Feng B, Jinkang Z, Zhen W, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater. 2011;6(1):015007.
  • Maji K, Dasgupta S, Kundu B, et al. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J Biomater Sci Polym Ed. 2015;26(16):1190–1209.
  • Vedadghavami A, Minooei F, Mohammadi MH, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017;62:42–63.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:9825659.
  • Purohit SD, Bhaskar R, Singh H, et al. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering. Int J Biol Macromol. 2019;133:592–602.
  • Ambekar RS, Kandasubramanian B. Progress in the advancement of porous biopolymer scaffold: tissue engineering application. Ind Eng Chem Res. 2019;58(16):6163–6194.
  • Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–5724.
  • Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018;6(2):90–99.
  • Nemati S, Kim S-j, Shin YM, et al. Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence. 2019;6(1):1–16.
  • Cai L, Xu D, Chen H, et al. Designing bioactive micro-/nanomotors for engineered regeneration. Eng Regenerat. 2021;2:109–115.
  • Chahal S, Kumar A, Hussian F. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed. 2019;30(14):1308–1355.
  • Yang C, Yu Y, Wang X, et al. Cellular fluidic-based vascular networks for tissue engineering. Eng Regenerat. 2021;2:171–174.
  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–292.
  • Zheng W, Zhang W, Jiang X. Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater. 2010;12(9):B451–B466.
  • Fernandez-Yague MA, Abbah SA, McNamara L, et al. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev. 2015;84:1–29.
  • Goonoo N, Bhaw-Luximon A, Jhurry D. In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications. RSC Adv. 2014;4(60):31618–31642.
  • Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016;61:922–939.
  • Chen X, Fan H, Deng X, et al. Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials. 2018;8(11):960.
  • Rasheed T, Bilal M, Zhao Y, et al. Physiochemical characteristics and bone/cartilage tissue engineering potentialities of protein-based macromolecules - A review. Int J Biol Macromol. 2019;121:13–22.
  • Yu NYC, Schindeler A, Little DG, et al. Biodegradable poly(alpha-hydroxy acid) polymer scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;93(1):285–295.
  • Al-Maharma AY, Patil SP, Markert B. Effects of porosity on the mechanical properties of additively manufactured components: a critical review. Mater Res Express. 2020;7(12):122001.
  • Lee YH, Lee JH, An I-G, et al. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials. 2005;26(16):3165–3172.
  • Rnjak-Kovacina J, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev. 2011;17(5):365–372.
  • Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, et al. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008;29(19):2907–2914.
  • Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30(25):4094–4103.
  • Niu Y, Stadler FJ, Fang J, et al. Hyaluronic acid-functionalized poly-lactic acid (PLA) microfibers regulate vascular endothelial cell proliferation and phenotypic shape expression. Colloids Surf B Biointerfaces. 2021;206:111970.
  • Rabel K, Kohal R-J, Steinberg T, et al. Controlling osteoblast morphology and proliferation via surface micro-topographies of implant biomaterials. Sci Rep. 2020;10(1):1–14.
  • Ogueri KS, Jafari T, Escobar Ivirico JL, et al. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5(2):128–154.
  • Hutmacher DW, Schantz JT, Lam CXF, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245–260.
  • Chung S, King MW. Design concepts and strategies for tissue engineering scaffolds. Biotechnol Appl Biochem. 2011;58(6):423–438.
  • Ghassemi Z, Slaughter G. Cross-linked electrospun gelatin nanofibers for cell-based assays. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. IEEE.
  • Ko JH, Yin H, An J, et al. Characterization of cross-linked gelatin nanofibers through electrospinning. Macromol Res. 2010;18(2):137–143.
  • Kim MS, Jun I, Shin YM, et al. The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications . Macromol Biosci. 2010;10(1):91–100.
  • Meng ZX, Wang YS, Ma C, et al. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng: C. 2010;30(8):1204–1210.
  • Vozzi G, Corallo C, Carta S, et al. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences . J Biomed Mater Res A. 2014;102(5):1415–1421.
  • Binulal NS, Natarajan A, Menon D, et al. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering . J Biomater Sci Polym Ed. 2014;25(4):325–340.
  • Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl. 2017;78:324–332.
  • De‐bing S, Zhi‐hui D, Wei‐guo F. Study on the properties of the electrospun silk fibroin/gelatin blend nanofibers for scaffolds. J Appl Polym Sci. 2009;111(3):1471–1477.
  • Tsai R-Y, Kuo T-Y, Hung S-C, et al. Use of gum arabic to improve the fabrication of chitosan-gelatin-based nanofibers for tissue engineering . Carbohydr Polym. 2015;115:525–532.
  • Liu Y, Cui H, Zhuang X, et al. Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomater. 2014;10(12):5074–5080.
  • Jegal S-H, Park J-H, Kim J-H, et al. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Acta Biomater. 2011;7(4):1609–1617.
  • Ranjbar‐Mohammadi M, Mousavi E, Mostakhdem Hashemi M, et al. Efficient co‐cultivation of human fibroblast cells (HFCs) and adipose‐derived stem cells (ADSs) on gelatin/PLCL nanofiber. IET Nanobiotechnol. 2020;14(1):73–77.
  • Jalaja K, Naskar D, Kundu SC, et al. Potential of electrospun core-shell structured gelatin-chitosan nanofibers for biomedical applications. Carbohydr Polym. 2016;136:1098–1107.
  • Tsai R-Y, Hung S-C, Lai J-Y, et al. Electrospun chitosan–gelatin–polyvinyl alcohol hybrid nanofibrous mats: Production and characterization. J Taiwan Inst Chem Eng. 2014;45(4):1975–1981.
  • Linh N, Lee B-T. Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. J Biomater Appl. 2012;27(3):255–266.
  • Dhandayuthapani B, Krishnan UM, Sethuraman S. Fabrication and characterization of chitosan‐gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res. 2010;94(1):n/a–272.
  • Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A. 2008;87(1):25–32.
  • Ehrmann A. Non-toxic crosslinking of electrospun gelatin nanofibers for tissue engineering and biomedicine—a review. Polymers. 2021;13(12):1973.
  • Chong LH, Lim MM, Sultana N. Fabrication and evaluation of polycaprolactone/gelatin-based electrospun nanofibers with antibacterial properties. J Nanomater. 2015;2015:1–8.
  • Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol. 2019;133:354–364.
  • Guo Z, Xu J, Ding S, et al. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed. 2015;26(15):989–1001.
  • Wang Z, Tang Y, Yakufu M, et al. Highly permeable Gelatin/Poly(lactic acid) Fibrous Scaffolds with a Three-Dimensional Spatial Structure for Efficient Cell Infiltration, Mineralization and Bone Regeneration . ACS Appl Bio Mater. 2020;3(10):6932–6943.
  • An G, Zhang W-B, Ma D-K, et al. Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold. Eur Rev Med Pharmacol Sci. 2017;21(10):2316–2328.
  • Choi M-O, Kim Y-J. Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin ratios on the characteristics of biomimetic composite nanofibrous scaffolds. Colloid Polym Sci. 2018;296(5):917–926.
  • Hashemi SF, Mehrabi M, Ehterami A, et al. In-vitro and in-vivo studies of PLA/PCL/gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Delivery Sci Technol. 2021;61:102077.
  • Xia P, Wang S, Qi Z, et al. BMP-2-releasing gelatin microspheres/PLGA scaffolds for bone repairment of X-ray-radiated rabbit radius defects. Artif Cells Nanomed Biotechnol. 2019;47(1):1662–1673.
  • Gentile P, Nandagiri VK, Daly J, et al. Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application . Mater Sci Eng C Mater Biol Appl. 2016;59:249–257.
  • Georgopoulou A, Papadogiannis F, Batsali A, et al. Chitosan/gelatin scaffolds support bone regeneration. J Mater Sci: Mater Med. 2018;29(5):1–13.
  • Miranda SCCC, Silva GAB, Hell RCR, et al. Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: a promising association for bone tissue engineering in oral reconstruction. Arch Oral Biol. 2011;56(1):1–15.
  • Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):1413–1433.
  • Choi MO, Kim Y-J. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization. Int J Biol Macromol. 2012;50(5):1188–1194.
  • Sun CK, Weng PW, Chang ZC, et al. Metformin-Incorporated gelatin/hydroxyapatite Nano-Fibers scaffold for bone regeneration. Tissue Eng Part A, 2022; 28(1–2):1–12.
  • Catledge S, Tyagi P, Koopman M, et al. Electrospun gelatin/hydroxyapatite nanocomposite scaffolds for bone tissue engineering MRS Online Proceedings Library (OPL), 2008, 1094.
  • Li H, Huang C, Jin X, et al. An electrospun poly (ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration. RSC Adv. 2018;8(44):25228–25235.
  • Phipps MC, Clem WC, Catledge SA, et al. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One. 2011;6(2):e16813.
  • Aktürk A, Cenik B, Aydoğdu Z, et al. Fabrication and characterization of polyvinyl alcohol/gelatin/silver nanoparticle nanocomposite materials. Eurasian J Biol Chem Sci. 2019;2(1):1–6.
  • Rujitanaroj P-o, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer. 2008;49(21):4723–4732.
  • Chen P, Liu L, Pan J, et al. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;97:325–335.
  • Gautam S, Sharma C, Purohit SD, et al. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater Sci Eng: C. 2021;119:111588.
  • Sattary M, Rafienia M, Khorasani MT, et al. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold . J Biomed Mater Res B Appl Biomater. 2019;107(4):933–950.
  • Zheng T, Guo L, Du Z, et al. Bioceramic fibrous scaffolds built with calcium silicate/hydroxyapatite nanofibers showing advantages for bone regeneration. Ceram Int. 2021;47(13):18920–18930.
  • Zhang X, Meng S, Huang Y, et al. Electrospun gelatin/-TCP composite nanofibers enhance osteogenic differentiation of BMSCs and in vivo bone formation by activating Ca2+-sensing receptor signaling. Stem Cells Int. 2015;2015:1–13.
  • Ezati M, Safavipour H, Houshmand B, et al. Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog Biomater. 2018;7(3):225–237.
  • Fu C, Bai H, Hu Q, et al. Enhanced proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts on graphene oxide-impregnated PLGA–gelatin nanocomposite fibrous membranes. RSC Adv. 2017;7(15):8886–8897.
  • Nagarajan S, Belaid H, Pochat-Bohatier C, et al. Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9(39):33695–33706.
  • Akturk A, Erol Taygun M, Goller G. Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering. Polym Compos. 2020;41(6):2411–2425.
  • Elkhouly H, Mamdouh W, El-Korashy DI. Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. J Mater Sci: Mater Med. 2021;32(9):1–15.
  • Wang H, Chu C, Cai R, et al. Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite nanofibrous scaffolds towards bone tissue engineering. RSC Adv. 2015;5(66):53550–53558.
  • Ozturk BY, Inci I, Egri S, et al. The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold. Eur J Orthop Surg Traumatol. 2013;23(7):767–774.
  • Xu M, Zhang X, Meng S, et al. Enhanced critical size defect repair in rabbit mandible by electrospun gelatin/β-TCP composite nanofibrous membranes. J Nanomater. 2015;2015:1–9.
  • Ba Linh NT, Lee KH, Lee BT. Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. J Biomed Mater Res A. 2013;101(8):2412–2423.
  • Dasgupta S, Maji K, Nandi SK. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: in vitro and in vivo. Mater Sci Eng: C. 2019;94:713–728.
  • Li D, Sun H, Jiang L, et al. Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS Appl Mater Interfaces. 2014;6(12):9402–9410.
  • Shamaz BH, Anitha A, Vijayamohan M, et al. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. Nanotechnology. 2015;26(40):405101.
  • Mohammadi Y, Mirzadeh H, Moztarzadeh F, et al. Osteogenic differentiation of mesenchymal stem cells on novel three-dimensional poly(L-lactic acid)/chitosan/gelatin/b-tricalcium phosphate hybrid scaffolds. 2007.
  • Hafezi F, Hosseinnejad F, Fooladi AAI, et al. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med. 2012;23(11):2783–2792.
  • Dan Y, Liu O, Liu Y, et al. Development of novel biocomposite scaffold of chitosan-gelatin/nanohydroxyapatite for potential bone tissue engineering applications. Nanoscale Res Lett. 2016;11(1):1–6.
  • Maji K, Dasgupta S. Bioactive glass and biopolymer based composite scaffold for bone regeneration. Trans Indian Ceramic Soc. 2015;74(4):195–201.
  • Saravanan S, Chawla A, Vairamani M, et al. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol. 2017;104(Pt B):1975–1985.
  • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431.
  • Udomluck N, Koh W-G, Lim D-J, et al. Recent developments in nanofiber fabrication and modification for bone tissue engineering. IJMS. 2019;21(1):99.
  • Solheim E. Growth factors in bone. Int Orthop. 1998;22(6):410–416.
  • Chen G, Zhang H, Wang H, et al. Immune tolerance induced by immune-homeostatic particles. Eng Regenerat. 2021;2:133–136.
  • Gittens SA, Uludag H. Growth factor delivery for bone tissue engineering. J Drug Target. 2001;9(6):407–429.
  • Hu X, Zheng S, Zhang R, et al. Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. Mater Sci Eng: C. 2022;112662.
  • Arun A, Malrautu P, Laha A, et al. Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci. 2021;16:71–81.
  • Meng ZX, Xu XX, Zheng W, et al. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerfaces. 2011;84(1):97–102.
  • Laha A, Gaydhane MK, Sharma CS, et al. Compressed nanofibrous oral tablets: an ingenious way for controlled release kinetics of Amphotericin-B loaded gelatin nanofibers. Nano Struct Nano Object. 2019;19:100367.
  • Fee T, Surianarayanan S, Downs C, et al. Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL + Gelatin Nanofibers. PLoS One. 2016;11(5):e0154806.
  • Fisher MB, Henning EA, Söegaard N, et al. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013;9(1):4496–4504.
  • Huang C, Ouyang Y, Niu H, et al. Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl Mater Interfaces. 2015;7(13):7189–7196.
  • Nathan AS, Baker BM, Nerurkar NL, et al. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 2011;7(1):57–66.
  • Chew SY, Mi R, Hoke A, et al. The effect of the alignment of electrospun fibrous scaffolds on schwann cell maturation. Biomaterials. 2008;29(6):653–661.
  • Chen X, Fu X, Shi J-G, et al. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two-and three-dimensional environments. Nanomedicine. 2013;9(8):1283–1292.
  • Lau CL, Kovacevic M, Tingleff TS, et al. 3D electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes. J Neurochem. 2014;130(2):215–226.
  • Mi H-Y, Salick MR, Jing X, et al. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: Fiber orientation and cell migration. J Biomed Mater Res A. 2015;103(2):593–603.
  • Yan G, Jing Y, Xue-jun C, et al. Aligned fibrous scaffold induced aligned growth of corneal stroma cells in vitro culture. Chem Res Chin Univ. 2012;28(6):1022–1025.
  • Singh B, Pramanik K. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. J Biomater Sci Polym Ed. 2018;29(16):2011–2034.
  • Cui Y, Wu Q, He J, et al. Porous nano-minerals substituted apatite/chitin/pectin nanocomposites scaffolds for bone tissue engineering. Arabian J Chem. 2020;13(10):7418–7429.
  • Kolanthai E, Sindu PA, Khajuria DK, et al. Graphene oxide-A tool for the preparation of chemically crosslinking free alginate-chitosan-collagen scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2018;10(15):12441–12452.
  • Gao Y, Shao W, Qian W, et al. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;84:195–207.
  • Haghbin M, Esmaeilzadeh J, Kahrobaee S. Freeze dried biodegradable polycaprolactone/chitosan/gelatin porous scaffolds for bone substitute applications. Macromol Res. 2020;28(S1):1232–1240.
  • Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications. Acta Biomater. 2019;93:86–96.
  • Singh YP, Dasgupta S, Bhaskar R, et al. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater. 2021;16(6):065030.
  • Reddy MSB, Ponnamma D, Choudhary R, et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 2021;13(7):1105.
  • Ho-Shui-Ling A, Bolander J, Rustom LE, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–162.
  • Soltani M, Yousefpour M, Taherian Z. Porous fluorhydroxyapatite-magnesium-gelatin novel composite scaffold based on freeze-drying mechanism for bone tissue engineering application. Mater Lett. 2019;244:195–198.
  • Mazaki T, Shiozaki Y, Yamane K, et al. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep. 2014;4(1):4457–4410.
  • Schonauer C, Tessitore E, Barbagallo G, et al. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13(S01):S89–S96.
  • Islam MM, AbuSamra DB, Chivu A, et al. Optimization of collagen chemical crosslinking to restore biocompatibility of tissue-engineered scaffolds. Pharmaceutics. 2021;13(6):832.
  • Sawyer AA, Song SJ, Susanto E, et al. The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials. 2009;30(13):2479–2488.
  • Ko C-C, Oyen M, Fallgatter AM, et al. Mechanical properties and cytocompatibility of biomimetic hydroxyapatite-gelatin nanocomposites. J Mater Res. 2006;21(12):3090–3098.
  • Xu T, Miszuk JM, Zhao Y, et al. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater. 2015;4(15):2238–2246.
  • Thomas A, Bera J. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. J Biomater Sci Polym Ed. 2019;30(7):561–579.
  • Ghorbani F, Zamanian A, Nojehdehian H. Effects of pore orientation on in-vitro properties of retinoic acid-loaded PLGA/gelatin scaffolds for artificial peripheral nerve application. Mater Sci Eng C Mater Biol Appl. 2017;77:159–172.
  • Gentile P, Mattioli-Belmonte M, Chiono V, et al. Bioactive glass/polymer composite scaffolds mimicking bone tissue. J Biomed Mater Res A. 2012;100(10):2654–2667.
  • Kim HW, Knowles JC, Kim HE. Porous scaffolds of gelatin–hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res Part B. 2005;74(2):686–698.
  • Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5(8):584–603.
  • Rao SH, Harini B, Shadamarshan RPK, et al. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol. 2018;110:88–96.
  • Jang J-H, Castano O, Kim H-W. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61(12):1065–1083.
  • Lee J-H, Luo J, Choi HK, et al. Functional nanoarrays for investigating stem cell fate and function. Nanoscale. 2020;12(17):9306–9326.
  • Alipal J, Pu'ad NM, Lee TC, et al. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater Today: Proc. 2021;42:240–250.
  • Shamloo A, Aghababaie Z, Afjoul H, et al. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study. Int J Pharm. 2021;592:120068.
  • Bakopoulou A, Georgopoulou Α, Grivas I, et al. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater. 2019;35(2):310–327.
  • Stoppel WL, Ghezzi CE, McNamara SL, et al. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng. 2015;43(3):657–680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.