328
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Thermosensitive and biodegradable PCL-based hydrogels: potential scaffolds for cartilage tissue engineering

, , , , &
Pages 695-714 | Received 10 Mar 2022, Accepted 02 May 2022, Published online: 06 Feb 2023

References

  • Aigner T, McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci. 2002;59(1):5–18.
  • Li X, Ding J, Wang J, et al. Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater. 2015;2(3):221–228.
  • Anderson JA, Little D, Toth AP, et al. Stem cell therapies for knee cartilage repair: the current status of preclinical and clinical studies. Am J Sports Med. 2014;42(9):2253–2261.
  • Zhang Y, Liu X, Zeng L, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019;29(36):1903279.
  • Wang C, Feng N, Chang F, et al. Injectable cholesterol‐enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration. Adv Healthcare Mater. 2019;8(14):1900312.
  • Le H, Xu W, Zhuang X, et al. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng. 2020;11:2041731420943839.
  • Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.
  • Matsunaga D, Akizuki S, Takizawa T, et al. Repair of articular cartilage and clinical outcome after osteotomy with microfracture or abrasion arthroplasty for medial gonarthrosis. Knee. 2007;14(6):465–471.
  • Harris JD, Cavo M, Brophy R, et al. Biological knee reconstruction: a systematic review of combined meniscal allograft transplantation and cartilage repair or restoration. Arthroscopy. 2011;27(3):409–418.
  • Bruns J, Meyer-Pannwitt U, Silhermann M. The rib perichondrium. Cells Tissues Organs. 1992;144(3):258–266.
  • Perka C, Schultz O, Lindenhayn K, et al. Joint cartilage repair with transplantation of embryonic chondrocytes embedded in collagen-fibrin matrices. Clin Exp Rheumatol. 2000;18(1):13–22.
  • Yu F-Y, Lu S-B, Huang L-H, et al. Mechanisms of autologous chondrocytes mass transplantation in the repair of cartilage defects of rabbits’ knee. Zhongguo Gu Shang. 2010;23(9):683–687.
  • Horas U, Pelinkovic D, Herr G, et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. JBJS. 2003;85(2):185–192.
  • Lin L, Shen Q, Xue T, et al. Sonic hedgehog improves redifferentiation of dedifferentiated chondrocytes for articular cartilage repair. PLoS One. 2014;9(2):e88550.
  • Mithoefer K, McAdams T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–2063.
  • Zhou T, Li X, Li G, et al. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Sci Rep. 2017;7(1):1–13.
  • Shao X, Lin S, Peng Q, et al. Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small. 2017;13(12):1602770.
  • Liao J, Tian T, Shi S, et al. The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res. 2017;5(1):1–15.
  • Wang S-J, Zhang Z-Z, Jiang D, et al. Thermogel-coated poly(ε-caprolactone) composite scaffold for enhanced cartilage tissue engineering. Polymers. 2016;8(5):200.
  • Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials. 2010;3(3):1746–1767.
  • Saghati S, Khoshfetrat AB, Tayefi Nasrabadi H, et al. Fabrication of alginate-based hydrogel cross-linked via horseradish peroxidase for articular cartilage engineering. BMC Res Notes. 2021;14(1):1–7.
  • Aslani S, Rahbarghazi R, Rahimzadeh S, et al. Dynamic of miRNA-101a-3p and miRNA-200a during induction of osteoblast differentiation in adipose-derived mesenchymal stem cells. Int J Mol Cell Med. 2020;9(2):140–146.
  • Hassanzadeh A, Ashrafihelan J, Salehi R, et al. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application. Artif Cells Nanomed Biotechnol. 2021;49(1):136–146.
  • Alexander A, Khan J, Saraf S, et al. Polyethylene glycol (PEG)–poly(N-isopropylacrylamide)(PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm. 2014;88(3):575–585.
  • Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243–262.
  • Hassani A, Khoshfetrat AB, Rahbarghazi R, et al. Collagen and nano-hydroxyapatite interactions in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation. Carbohydr Polym. 2022;277:118807.
  • Hwang NS, Varghese S, Zhang Z, et al. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels . Tissue Eng. 2006;12(9):2695–2706.
  • Bosnakovski D, Mizuno M, Kim G, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93(6):1152–1163.
  • Eslahi N, Abdorahim M, Simchi A. Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules. 2016;17(11):3441–3463.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science. 2011;2011:1–19.
  • Garcia Giralt N, Izquierdo R, Nogués X ‐, et al. A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline‐specific extracellular matrix protein synthesis. J Biomed Mater Res. 2008;85A(4):1082–1089.
  • Shih T, Yang J, Jia H, et al. Synthesis and properties of biodegradable segmented poly-ε-caprolactone. J Med Biol Eng. 2014;34(3):238–242.
  • Osathanon T, Chuenjitkuntaworn B, Nowwarote N, et al. The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Eng Regen Med. 2014;11(3):239–246.
  • Sarasam A, Madihally SV. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials. 2005;26(27):5500–5508.
  • Motamedian SR, Hosseinpour S, Ahsaie MG, et al. Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells. 2015;7(3):657–668.
  • Siddiqui N, Asawa S, Birru B, et al. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60(7):506–532.
  • Zhang Y, Yu J, Ren K, et al. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 2019;20(4):1478–1492.
  • Ma N, Yan Z. Research progress of thermosensitive hydrogel in tumor therapeutic. Nanoscale Res Lett. 2021;16(1):42–42.
  • Zhao S-P, Zhang L-M, Ma D, et al. Fabrication of novel supramolecular hydrogels with high mechanical strength and adjustable thermosensitivity. J Phys Chem B. 2006;110(33):16503–16507.
  • Brunelle AR, Horner CB, Low K, et al. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater. 2018;66:166–176.
  • Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–426.
  • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–198.
  • Seddiki N, Aliouche D. Synthesis, rheological behavior and swelling properties of copolymer hydrogels based on poly (N-isopropylacrylamide) with hydrophilic monomers. Bull Chem Soc Eth. 2013;27(3):447–457.
  • Zhang X-Z, Xu X-D, Cheng S-X, et al. Strategies to improve the response rate of thermosensitive hydrogels. Soft Matter. 2008;4(3):385–391.
  • Lima AC, Song W, Blanco-Fernandez B, et al. Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces. Pharm Res. 2011;28(6):1294–1305.
  • Kwon IK, Matsuda T. Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials. 2006;27(7):986–995.
  • Mellati A, Kiamahalleh MV, Madani SH, et al. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering. J Biomed Mater Res A. 2016;104(11):2764–2774.
  • Ibusuki S, Fujii Y, Iwamoto Y, et al. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng. 2003;9(2):371–384.
  • Wang Z, Le H, Wang Y, et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater. 2022;11:317–338.
  • Zhao D, Zhu T, Li J, et al. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater. 2021;6(2):346–360.
  • Karkan SF, Rahbarghazi R, Davaran S, et al. Electrospun polyurethane/poly(ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions. Microvasc Res. 2021;133:104073.
  • Asadi N, Del Bakhshayesh AR, Davaran S, et al. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater Chem Phys. 2020;242:122528.
  • Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, et al. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega. 2018;3(8):8605–8611.
  • Asadi N, Alizadeh E, Rahmani Del Bakhshayesh A, et al. Fabrication and in vitro evaluation of nanocomposite hydrogel scaffolds based on gelatin/PCL–PEG–PCL for cartilage tissue engineering. ACS Omega. 2019;4(1):449–457.
  • Shabestari S, Aghazadeh M, Rakhtshah J, et al. A review of hydrogel systems based on poly (N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids Surf, B. 2021;208:112035.
  • Lee M-Y, Tsai W-W, Chen H-J, et al. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering. Biomed Mater Eng. 2013;23(6):533–543.
  • Yeong W-Y, Chua C-K, Leong K-F, et al. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22(12):643–652.
  • Hou J, Jiang J, Guo H, et al. Fabrication of fibrillated and interconnected porous poly(ε-caprolactone) vascular tissue engineering scaffolds by microcellular foaming and polymer leaching. RSC Adv. 2020;10(17):10055–10066.
  • Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol. 2011;22(5):661–666.
  • Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Biomaterials. 2006;27(21):3980–3987.
  • Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3(2):23–24.
  • Yang S, Leong K-F, Du Z, et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679–689.
  • Leong K, Cheah C, Chua C. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24(13):2363–2378.
  • Duan B, Wang M. Selective laser sintering and its application in biomedical engineering. MRS Bull. 2011;36(12):998–1005.
  • Partee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds, 2006.
  • Wan Y, Feng G, Shen FH, et al. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials. 2008;29(6):643–652.
  • Sasaki J-I, Asoh T-A, Matsumoto T, et al. Fabrication of three-dimensional cell constructs using temperature-responsive hydrogel. Tissue Eng Part A. 2010;16(8):2497–2504.
  • Ding J, Zhang J, Li J, et al. Electrospun polymer biomaterials. Prog Polym Sci. 2019;90:1–34.
  • Ehtesabi H, Massah F. Improvement of hydrophilicity and cell attachment of polycaprolactone scaffolds using green synthesized carbon dots. Mater Today Sustain. 2021;13:100075.
  • He X, Feng B, Huang C, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine. 2015;10:2089–2099.
  • Von Der Mark K, Gauss V, Von Der Mark H, et al. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267(5611):531–532.
  • Mousavi S, Khoshfetrat AB, Khatami N, et al. Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: physical properties and fibroblastic cell behavior. Biochem Biophys Res Commun. 2019 ;518(4):625–631. 2019/10/22/
  • Afewerki S, Sheikhi A, Kannan S, et al. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioeng Transl Med. 2019;4(1):96–115.]. 2019/01/01
  • Zein I, Hutmacher DW, Tan KC, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–1185.
  • Botchwey EA, Dupree MA, Pollack SR, et al. Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. J Biomed Mater Res A. 2003;67(1):357–367.
  • Athanasiou KA, Rosenwasser M, Buckwalter J, et al. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res. 1991;9(3):330–340.
  • Saghebasl S, Davaran S, Rahbarghazi R, et al. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/gelatin and (PCL-PEG-PCL)/gelatin for use in cartilage tissue engineering. J Biomater Sci Polym Ed. 2018;29(10):1185–1206.
  • Teo WE, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific extracellular matrix . Biotechnol J. 2006;1(9):918–929.
  • Nezarati RM, Eifert MB, Cosgriff-Hernandez E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Method. 2013;19(10):810–819.
  • Okuzaki H, Kobayashi K, Yan H. Non-woven fabric of poly (N-isopropylacrylamide) nanofibers fabricated by electrospinning. Synth Met. 2009;159(21–22):2273–2276.
  • Rockwood DN, Chase DB, Akins Jr RE, et al. Characterization of electrospun poly (N-isopropyl acrylamide) fibers. Polymer. 2008;49(18):4025–4032.
  • Horner CB, Hirota K, Liu J, et al. Magnitude-dependent and inversely-related osteogenic/chondrogenic differentiation of human mesenchymal stem cells under dynamic compressive strain. J Tissue Eng Regen Med. 2018;12(2):e637–e647.
  • Eljarrat Binstock E, Bentolila A, Kumar N ‐, et al. Preparation, characterization, and sterilization of hydrogel sponges for iontophoretic drug‐delivery use. Polym Adv Technol. 2007;18(9):720–730.
  • Liu W, Zhan J, Su Y, et al. Injectable hydrogel incorporating with nanoyarn for bone regeneration. J Biomater Sci Polym Ed. 2014;25(2):168–180.
  • Nam J, Huang Y, Agarwal S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13(9):2249–2257.
  • Pelosi C, Guazzelli E, Calosi M, et al. Investigation of the LCST-thermoresponsive behavior of novel oligo (ethylene glycol)-modified pentafluorostyrene homopolymers. Applied Sciences. 2021;11(6):2711.
  • Pereira RF, Bartolo PJ. Traditional therapies for skin wound healing. Adv Wound Care. 2016;5(5):208–229.
  • James AW, Xu Y, Lee JK, et al. Differential effects of TGF-beta1 and TGF-beta3 on chondrogenesis in posterofrontal cranial suture-derived mesenchymal cells in vitro. Plast Reconstr Surg. 2009;123(1):31–43.
  • Wu H, Wang S, Fang H, et al. Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-β1 delivery. Colloids Surf B Biointerfaces. 2011;82(2):602–608.
  • Yoshizawa H, Morishita Y, Watanabe M, et al. TGF-β1-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther. 2015;22(4):333–340.
  • Li G, Fu N, Xie J, et al. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based electrospun 3d scaffolds for delivery of autogeneic chondrocytes and adipose-derived stem cells: evaluation of cartilage defects in rabbit. J Biomed Nanotechnol. 2015;11(1):105–116.
  • Ko CY, Ku KL, Yang SR, et al. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med. 2016;10(10):E485–E496.
  • Gao X, Deng X, Wei X, et al. Novel thermosensitive hydrogel for preventing formation of abdominal adhesions. Int J Nanomedicine. 2013;8:2453.
  • Tran T-Q-M, Hsieh M-F, Chang K-L, et al. Bactericidal effect of lauric acid-loaded PCL-PEG-PCL nano-sized micelles on skin commensal Propionibacterium acnes. Polymers. 2016;8(9):321.
  • Pazarçeviren E, Erdemli Ö, Keskin D, et al. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. J Biomater Appl. 2017;31(8):1148–1168.
  • Li C, Wang K, Zhou X, et al. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed Mater. 2019;14(2):025006.
  • Nie X, Chuah YJ, Zhu W, et al. Decellularized tissue engineered hyaline cartilage graft for articular cartilage repair. Biomaterials. 2020;235:119821.
  • Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25.
  • Giannoni P, Pagano A, Maggi E, et al. Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis Cartilage. 2005;13(7):589–600.
  • Liu X, Song S, Huang J, et al. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. J Mater Chem B. 2020;8(28):6115–6127.
  • Bosworth LA, Turner L-A, Cartmell SH. State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine. 2013;9(3):322–335.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351.
  • Lee JB, Jeong SI, Bae MS, et al. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. J Nanosci Nanotechnol. 2011;11(7):6371–6376.
  • Butcher AL, Offeddu GS, Oyen ML. Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol. 2014;32(11):564–570.
  • Zhang X, Kong M, Tian M-P, et al. The temperature-responsive hydroxybutyl chitosan hydrogels with polydopamine coating for cell sheet transplantation. Int J Biol Macromol. 2018;120(Pt A):152–158.
  • Dang JM, Sun DD, Shin-Ya Y, et al. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials. 2006;27(3):406–418.
  • Bian L, Guvendiren M, Mauck RL, et al. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci U S A. 2013;110(25):10117–10122.
  • Valipour F, Valipour F, Rahbarghazi R, et al. Novel hybrid polyester-polyacrylate hydrogels enriched with platelet-derived growth factor for chondrogenic differentiation of adipose-derived mesenchymal stem cells in vitro. J Biol Eng. 2021;15(1):6–14.
  • Ferrari R, Yu Y, Morbidelli M, et al. ε-Caprolactone-based macromonomers suitable for biodegradable nanoparticles synthesis through free radical polymerization. Macromolecules. 2011;44(23):9205–9212.
  • Kemal E, Deb S. Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair. J Mater Chem. 2012;22(21):10725–10735.
  • Jayakumar R, Ramachandran R, Divyarani V, et al. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. Int J Biol Macromol. 2011;48(2):336–344.
  • Hu C-H, Zhang X-Z, Zhang L, et al. Temperature-and pH-sensitive hydrogels to immobilize heparin-modified PEI/DNA complexes for sustained gene delivery. J Mater Chem. 2009;19(47):8982–8989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.