584
Views
0
CrossRef citations to date
0
Altmetric
Article

Phenylboronic acid modified hydrogel materials and their potential for use in contact lens based drug delivery

, ORCID Icon &
Pages 1924-1938 | Received 04 Apr 2022, Accepted 08 Jun 2022, Published online: 20 Jun 2022

References

  • Gower NJD, Barry RJ, Edmunds MR, et al. Drug discovery in ophthalmology: past success, present challenges, and future opportunities. BMC Ophthalmol. 2016;16(1):11.
  • Gote V, Sikder S, Sicotte J, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–624.
  • Volmer JB, Drummond J. The challenges and opportunities of drug delivery through a complex barrier. ONdrugDelivery Mag. 2019;(94):6–9.
  • Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.
  • Fessi MDSBVrAaH. Ophthalmic drug delivery systems for antibiotherapy—a review. Pharmaceutics. 2018;10(10):1–31.
  • Subrizi A, del Amo EM, Korzhikov-Vlakh V, et al. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 2019;24(8):1446–1457.
  • Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–1315.
  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245.
  • Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27(7):787–794.
  • Abdelkader E, Yip KP, Cornish KS. Pneumatic displacement of submacular haemorrhage. Saudi J Ophthalmol. 2016;30(4):221–226.
  • Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58(4):217–226.
  • Fang G, Yang X, Wang Q, et al. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater Sci Eng C Mater Biol Appl. 2021;127:112212.
  • Bengani LC, Hsu K-H, Gause S, et al. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv. 2013;10(11):1483–1496.
  • Alvarez-Lorenzo C, Anguiano-Igea S, Varela-Garcia A, et al. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater. 2019;84:49–62.
  • Bengani LC, Kobashi H, Ross AE, et al. Steroid-eluting contact lenses for corneal and intraocular inflammation. Acta Biomater. 2020;116:149–161.
  • Ross AE, Bengani LC, Tulsan R, et al. Topical sustained drug delivery to the retina with a drug-eluting contact lens. Biomaterials. 2019;217:119285.
  • Choi JH, Li Y, Jin R, et al. The efficiency of cyclosporine A-Eluting contact lenses for the treatment of dry eye. Current Eye Research. 2019; May 444(5):486–496.
  • Mun J, Mok JW, Jeong S, et al. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC Adv. 2019;9(29):16578–16585.
  • Ciolino JB, Hoare TR, Iwata NG, et al. A drug-eluting contact lens. Invest Ophthalmol Vis Sci. 2009;50(7):3346–3352.
  • Ciolino JB, Hudson SP, Mobbs AN, et al. A prototype antifungal contact lens. Invest Ophthalmol Vis Sci. 2011;52(9):6286–6291.
  • Ciolino JB, Stefanescu CF, Ross AE, et al. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials. 2014;35(1):432–439.
  • Horne RR, Judd KE, Pitt WG. Rapid loading and prolonged release of latanoprost from a silicone hydrogel contact lens. J Drug Delivery Sci Technol. 2017;41:410–418.
  • Gade SK, Nirmal J, Garg P, et al. Corneal delivery of moxifloxacin and dexamethasone combination using drug-eluting mucoadhesive contact lens to treat ocular infections. Int J Pharm. 2020;591:120023.
  • Lanier OL, Christopher KG, Macoon RM, et al. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv. 2020;17(8):1133–1149.
  • White CJ, Thomas CR, Byrne ME. Bringing comfort to the masses: a novel evaluation of comfort agent solution properties. Cont Lens Anterior Eye. 2014;37(2):81–91.
  • Uchida R, Sato T, Tanigawa H, et al. Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens. J Control Release. 2003;92(3):259–264.
  • Sato T, Uchida R, Tanigawa H, et al. Application of polymer gels containing side-chain phosphate groups to drug-delivery contact lenses. J Appl Polym Sci. 2005;98(2):731–735.
  • Xu J, Li X, Sun F. Cyclodextrin-containing hydrogels for contact lenses as a platform for drug incorporation and release. Acta Biomater. 2010;6(2):486–493.
  • Venkatesh S, Sizemore SP, Byrne ME. Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics. Biomaterials. 2007;28(4):717–724.
  • Gonzalez-Chomon C, Silva M, Concheiro A, et al. Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomater. 2016;41:302–311.
  • Zhang Y, Guan Y, Zhou S. Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules. 2006;7(11):3196–3201.
  • António JPM, Russo R, Carvalho CP, et al. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev. 2019;48(13):3513–3536.
  • Tan G, Li J, Song Y, et al. Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater. 2019;99:350–362.
  • Li C, Liu Z, Yan X, et al. Mucin-controlled drug release from mucoadhesive phenylboronic acid-rich nanoparticles. Int J Pharm. 2015;479(1):261–264.
  • Prosperi-Porta G, Kedzior S, Muirhead B, et al. Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery. Biomacromolecules. 2016;17(4):1449–1457.
  • Kolawole OM, Lau WM, Khutoryanskiy VV. Synthesis and evaluation of boronated chitosan as a mucoadhesive polymer for intravesical drug delivery. J Pharm Sci. 2019;108(9):3046–3053.
  • Zhai W, Male L, Fossey JS. Glucose selective bis-boronic acid click-fluor. Chem Commun. 2017;53(14):2218–2221.
  • Xu S, Sedgwick AC, Elfeky SA, et al. A boronic acid-based fluorescent hydrogel for monosaccharide detection. Front Chem Sci Eng. 2020;14(1):112–115.
  • Bian Z, Liu A, Li Y, et al. Boronic acid sensors with double recognition sites: a review. Analyst. 2020;145(3):719–744.
  • Alizadeh N, Salimi A, Hallaj R. A strategy for visual optical determination of glucose based on a smartphone device using fluorescent boron-doped carbon nanoparticles as a light-up probe. Mikrochim Acta. 2019;187(1):14.
  • Siddireddy JS, Vijay AK, Tan J, et al. The eyelids and tear film in contact lens discomfort. Contact Lens Anterior Eye. 2018;41(2):144–153.
  • Ivanov AE, Larsson H, Galaev IY, et al. Synthesis of boronate-containing copolymers of N,N-dimethylacrylamide, their interaction with poly(vinyl alcohol) and rheological behaviour of the gels. Polymer. 2004;45(8):2495–2505.
  • Ivanov AE, Eccles J, Panahi HA, et al. Boronate-containing polymer brushes: characterization, interaction with saccharides and mammalian cancer cells. J Biomed Mater Res A. 2009;88(1):213–225.
  • Korogiannaki M, Jones L, Sheardown H. Impact of a hyaluronic acid-grafted layer on the surface properties of model silicone hydrogel contact lenses. Langmuir. 2019;35(4):950–961.
  • Yang D, Stimpson TC, Soucy J, et al. Increasing wet adhesion between cellulose surfaces with polyvinylamine. Cellulose. 2019;26(1):341–353.
  • Mendes AC, Sevilla Moreno J, Hanif M, et al. Morphological, mechanical and mucoadhesive properties of electrospun chitosan/phospholipid hybrid nanofibers. Int J Mol Sci. 2018;19(8):2266.
  • Kongsong M, Songsurang K, Sangvanich P, et al. Design, synthesis, fabrication and in vitro evalution of mucoadhesive 5-amino-2-mercaptobenzimidazole chitosan as low water soluble drug carriers. Eur J Pharm Biopharm. 2014;88(3):986–997.
  • Rabiah NI, Scales CW, Fuller GG. The influence of protein deposition on contact lens tear film stability. Colloids Surf B Biointerfaces. 2019;180:229–236.
  • La HC, Lee NY. Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens. Biomed Microdevices. 2019;21(3):72.
  • Brooks WLA, Deng CC, Sumerlin BS. Structure-reactivity relationships in boronic acid-diol complexation. ACS Omega. 2018;3(12):17863–17870.
  • Gong H, Liu W, Carlquist M, et al. Boronic acid modified polymer nanoparticles for enhanced bacterial deactivation. ChemBioChem. 2019;20(24):2991–2995.
  • Moreno JAS, Mendes AC, Stephansen K, et al. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr Polym. 2018;190:240–247.
  • Kowalczyk W, Sanchez J, Kraaz P, et al. The binding of boronated peptides to low affinity mammalian saccharides. Pept Sci. 2018;110(3):e23101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.