350
Views
3
CrossRef citations to date
0
Altmetric
Article

Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies

, , , &
Pages 1939-1954 | Received 28 Jun 2021, Accepted 05 May 2022, Published online: 20 Jun 2022

References

  • Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–S69.
  • Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev. 2014;20(5):455–467.
  • Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–553.
  • Crowther CA, Hiller JE, Moss JR, et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352(24):2477–2486.
  • Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369.
  • Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.
  • de Groot M. Immunoprotection of pancreatic islets: in vitro studies into causes of microencapsulated graft failure [doctoral thesis]. Groningen: University of Groningen; 2004.
  • Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med. 2012;2(4):a007781.
  • He Z-X, Zhou Z-W, Yang Y, et al. Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol. 2015;42(2):125–138.
  • Xie J, Li A, Li J. Advances in pH-sensitive polymers for smart insulin delivery. Macromol Rapid Commun. 2017;38(23):1700413.
  • Elshaarani T, Yu H, Wang L, et al. Dextran-crosslinked glucose responsive nanogels with a self-regulated insulin release at physiological conditions. Eur Polym J. 2020;125:109505.
  • Cubayachi C, Lemos CN, Pereira F, et al. Silk fibroin films stabilizes and releases bioactive insulin for the treatment of corneal wounds. Eur Polym J. 2019;118:502–513.
  • Chen BZ, Ashfaq M, Zhu DD, et al. Controlled delivery of insulin using rapidly separating microneedles fabricated from genipin-crosslinked gelatin. Macromol Rapid Commun. 2018;39(20):1800075.
  • Bhattacharyya A, Mukherjee D, Mishra R, et al. Preparation of polyurethane–alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery. Eur Polym J. 2017;92:294–313.
  • Reis CP, Ribeiro AJ, Neufeld RJ, et al. Alginate microparticles as novel carrier for oral insulin delivery. Biotechnol Bioeng. 2007;96(5):977–989.
  • Fuchs S, Ernst AU, Wang L-H, et al. Hydrogels in emerging technologies for type 1 diabetes. Chem Rev. 2021;121(18):11458–11526.
  • Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication. 2021;13(3):035044.
  • Naficy S, Dehghani F, Chew YV, et al. Engineering a porous hydrogel-based device for cell transplantation. ACS Appl Bio Mater. 2020;3(4):1986–1994.
  • Lin C-C, Anseth KS. Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells. Biomacromolecules. 2009;10(9):2460–2467.
  • Strand BL, Coron AE, Skjak-Braek G. Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl Med. 2017;6(4):1053–1058.
  • Acarregui A, Ciriza J, Saenz del Burgo L, et al. Characterization of an encapsulated insulin secreting human pancreatic beta cell line in a modular microfluidic device. J Drug Target. 2018;26(1):36–44.
  • Marchioli G, van Gurp L, van Krieken PP, et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of langerhans transplantation. Biofabrication. 2015;7(2):025009.
  • An D, Chiu A, Flanders JA, et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc Natl Acad Sci USA. 2018;115:E263–E272.
  • Merani S, Toso C, Emamaullee J, et al. Optimal implantation site for pancreatic islet transplantation. Br J Surg. 2008;95(12):1449–1461.
  • Shih Lin CCH, Shih H, Lin CC, et al. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol Rapid Commun. 2013;34(3):269–273.
  • Fotino N, Fotino C, Pileggi A. Re-engineering islet cell transplantation. Pharmacol Res. 2015;98:76–85.
  • Korsgren O. Islet encapsulation: physiological possibilities and limitations. Diabetes. 2017;66(7):1748–1754.
  • Bochenek MA, Veiseh O, Vegas AJ, et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng. 2018;2(11):810–821.
  • Lauritano C, Ianora A. Marine organisms with anti-diabetes properties. Mar Drugs. 2016;14(12):220.
  • Kim KJ, Yoon KY, Lee BY. Fucoidan regulate blood glucose homeostasis in C57BL/KSJ m+/+db and C57BL/KSJ db/db mice. Fitoterapia. 2012;83(6):1105–1109.
  • Li B, Lu F, Wei X, et al. Fucoidan: structure and bioactivity. Molecules. 2008;13(8):1671–1695.
  • Silva TH, Alves A, Popa EG, et al. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2012;2(4):278–289.
  • Reys LL, Vaithilingam V, Sthijns M, et al. Fucoidan hydrogels significantly alleviate oxidative stress and enhance the endocrine function of encapsulated beta cells. Adv Funct Mater. 2021;31(35):2011205.
  • Sezer A, Cevher E. Fucoidan: a versatile biopolymer for biomedical applications. In: Zilberman M, editor. Act implant scaffolds tissue regen. Berlin, Heidelberg: Springer; 2011. p. 377.
  • Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9(10):2106–2130.
  • Reys LL, Silva SS, Soares da Costa D, et al. Fucoidan hydrogels photo-cross-linked with visible radiation as matrices for cell culture. ACS Biomater Sci Eng. 2016;2(7):1151–1161.
  • Lee JS, Jin GH, Yeo MG, et al. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym. 2012;90(1):181–188.
  • Perumal RK, Perumal S, Thangam R, et al. Collagen-fucoidan blend film with the potential to induce fibroblast proliferation for regenerative applications. Int J Biol Macromol. 2018;106:1032–1040.
  • Sezer AD, Cevher E, Hatipoğlu F, et al. Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol Pharm Bull. 2008;31(12):2326–2333.
  • Sezer AD, Cevher E, Hatipoğlu F, et al. The use of fucosphere in the treatment of dermal burns in rabbits. Eur J Pharm Biopharm. 2008;69(1):189–198.
  • Murakami K, Ishihara M, Aoki H, et al. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings. Wound Repair Regen. 2010;18(5):478–485.
  • Ferreira VRA, Azenha MA, Bustamante AG, et al. Metal cation sorption ability of immobilized and reticulated chondroitin sulfate or fucoidan through a sol-gel crosslinking scheme. Mater Today Commun. 2016;8:172–182.
  • Jin G, Kim GH. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem. 2011;21(44):17710–17718.
  • Jeong HS, Venkatesan J, Kim S-K. Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol. 2013;57:138–141.
  • Lowe B, Venkatesan J, Anil S, et al. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1479–1487.
  • Murakami K, Aoki H, Nakamura S, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials. 2010;31(1):83–90.
  • Sezer AD, Akbuğa J. Fucosphere—new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul. 2006;23:513–522.
  • Rial-Hermida MI, Oliveira NM, Concheiro A, et al. Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomater. 2014;10(10):4314–4322.
  • Deng X, Mammen L, Butt H-J, et al. Candle soot as a template for a transparent robust superamphiphobic coating. Science. 2012;335(6064):67–70.
  • Shih H, Mirmira RG, Lin CC. Visible light-initiated interfacial thiol-norbornene photopolymerization for forming islet surface conformal coating. J Mater Chem B. 2015;3:170–175.
  • Tahtat D, Mahlous M, Benamer S, et al. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol. 2013;58:160–168.
  • Saboural P, Chaubet F, Rouzet F, et al. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction. Mar Drugs. 2014;12(9):4851–4867.
  • Coutinho DF, Sant SV, Shin H, et al. Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials. 2010;31(29):7494–7502.
  • Morelli A, Chiellini F, Morelli FA. Ulvan as a new type of biomaterial from renewable resources: functionalization and hydrogel preparation. Macromol Chem Phys. 2010;211(7):821–832.
  • Sood A, Panchagnula R. Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev. 2001;101(11):3275–3303.
  • Silva CM, Ribeiro AJ, Ferreira D, et al. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur J Pharm Sci. 2006;29(2):148–159.
  • Mukhopadhyay P, Sarkar K, Chakraborty M, et al. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C Mater Biol Appl. 2013;33(1):376–382.
  • Shahbazi M-A, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab. 2013;14(1):28–56.
  • Guo-Parke H, McCluskey JT, Kelly C, et al. Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility. J Endocrinol. 2012;214(3):257–265.
  • Johnson AS, Fisher RJ, Weir GC, et al. Oxygen consumption and diffusion in assemblages of respiring spheres: performance enhancement of a bioartificial pancreas. Chem Eng Sci. 2009;64(22):4470–4487.
  • Li W, Lee S, Ma M, et al. Microbead-based biomimetic synthetic neighbors enhance survival and function of rat pancreatic β-cells. Sci Rep. 2013;3:2863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.