125
Views
0
CrossRef citations to date
0
Altmetric
Article

Fabrication of novel ruthenium loaded silk fibroin nanomaterials for fingolimod release improved antitumor efficacy in hepatocellular carcinoma

, , , , ORCID Icon &
Pages 1955-1972 | Received 20 Dec 2021, Accepted 13 Jun 2022, Published online: 12 Jul 2022

References

  • Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, et al. Hepatocellular carcinoma: from diagnosis to treatment. Surg Oncol. 2016;25(2):74–85.
  • Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol. 2017;34(2):153–159.
  • Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–1022.
  • Di Bisceglie AM, Rustgi VK, Hoofnagle J, et al. Hepatocellular carcinoma. Ann Intern Med. 1988;108(3):390–401.
  • Ma G, Du X, Zhu J, et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J. Drug Deliv. Sci. Technol. 2021;63:102493.
  • Cheng A-L, Kang Y-K, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.
  • Bondì ML, Scala A, Sortino G, et al. Nanoassemblies based on supramolecular complexes of nonionic amphiphilic cyclodextrin and sorafenib as effective weapons to kill human HCC cells. Biomacromolecules. 2015;16(12):3784–3791.
  • Sridhar R, Ravanan S, Venugopal JR, et al. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: in vitro efficacy evaluation. J Biomater Sci Polym Ed. 2014;25(10):985–998.
  • Zhao GX, Tanaka H, Kim CW, et al. Histidinylated poly-l-lysine-based vectors for cancer-specific gene expression via enhancing the endosomal escape. J Biomater Sci Polym Ed. 2014;25(5):519–534.
  • Taleblou N, Sirousazar M, Hassan ZM, et al. Capecitabine-loaded anti-cancer nanocomposite hydrogel drug delivery systems: in vitro and in vivo efficacy against the 4T1 murine breast cancer cells. J Biomater Sci Polym Ed. 2020;31(1):72–92.
  • Hu Y, Yu D, Zhang X. 9-Amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochem. 2021;100:140–148.
  • Schmithals C, Köberle V, Korkusuz H, et al. Improving drug penetrability with iRGD leverages the therapeutic response to sorafenib and doxorubicin in hepatocellular carcinoma. Cancer Res. 2015;75(15):3147–3154.
  • Ueda K, Akiba J, Ogasawara S, et al. Growth inhibitory effect of an injectable hyaluronic acid–tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta Biomater. 2016;29:103–111.
  • Xia Y, Tang G, Chen Y, et al. Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater. 2021;6(5):1330–1340.
  • Chen H, Shi D, Wang Y, et al. The advances in applying inorganic fluorescent nanomaterials for the detection of hepatocellular carcinoma and other cancers. RSC Adv. 2015;5(97):79572–79584.
  • Chen Y-C, Chiu W-T, Chen J-C, et al. The photothermal effect of silica–carbon hollow sphere–concanavalin a on liver cancer cells. J Mater Chem B. 2015;3(12):2447–2454.
  • Zhao M, Bu Y, Feng J, et al. SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett. 2020;470:54–63.
  • Lu J, Wang J, Ling D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small. 2018;14(5):1702037.
  • Huang Y, Xie D, Gou S, et al. Quadruple-responsive nanoparticle-mediated targeted combination chemotherapy for metastatic breast cancer. Nanoscale. 2021;13(11):5765–5779.
  • Sonamuthu J, Cai Y, Liu H, et al. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int J Biol Macromol. 2020;153:1058–1069.
  • Wu X, Zhou M, Jiang F, et al. Marginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogels. Bioact Mater. 2021;6(11):3976–3986.
  • Singh S, Cortes G, Kumar U, et al. Silk fibroin nanofibrous mats for visible sensing of oxidative stress in cutaneous wounds. Biomater Sci. 2020;8(21):5900–5910.
  • Feng J, Wu Y, Chen W, et al. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J Mater Chem B. 2020;8(2):308–315.
  • Sun Y, Cheng S, Lu W, et al. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019;9(44):25712–25729.
  • Han Q, Zheng T, Zhang L, et al. Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. J Biomater Sci Polym Ed. 2022;33(6):747–768.
  • Hashimoto T, Kojima K, Otaka A, et al. Quantitative evaluation of fibroblast migration on a silk fibroin surface and TGFBI gene expression. J Biomater Sci Polym Ed. 2013;24(2):158–169.
  • Wang X, Shao M, Zhang S, et al. Biomedical applications of gold nanorod-based multifunctional nano-carriers. J. Nanoparticle Res. 2013;15:1892.
  • Xiong R, Luan J, Kang S, et al. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev. 2020;49(3):983–1031.
  • Ding B, Wahid MA, Wang Z, et al. Triptolide and celastrol loaded silk fibroin nanoparticles show synergistic effect against human pancreatic cancer cells. Nanoscale. 2017;9(32):11739–11753.
  • Dorishetty P, Dutta NK, Choudhury NR. Silk fibroins in multiscale dimensions for diverse applications. RSC Adv. 2020;10(55):33227–33247.
  • Subia B, Chandra S, Talukdar S, et al. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol. 2014;6(2):203–214.
  • Li J, Zhou Y, Chen W, et al. A novel 3D in vitro tumor model based on silk fibroin/chitosan scaffolds to mimic the tumor microenvironment. ACS Appl Mater Interfaces. 2018;10(43):36641–36651.
  • Song W, Muthana M, Mukherjee J, et al. Magnetic-silk core–shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng. 2017;3(6):1027–1038.
  • Khoo AS, Valentin TM, Leggett SE, et al. Breast cancer cells transition from mesenchymal to amoeboid migration in tunable Three-Dimensional silk–collagen hydrogels. ACS Biomater Sci Eng. 2019;5(9):4341–4354.
  • Poynton FE, Bright SA, Blasco S, et al. The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev. 2017;46(24):7706–7756.
  • Lu M, Henry CE, Lai H, et al. A new 3D organotypic model of ovarian cancer to help evaluate the antimetastatic activity of RAPTA-C conjugated micelles. Biomater Sci. 2019;7(4):1652–1660.
  • Holden L, Burke CS, Cullinane D, et al. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol. 2021;2(4):1021–1049.
  • Gill MR, Menon JU, Jarman PJ, et al. 111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells. Nanoscale. 2018;10(22):10596–10608.
  • Nayak V, Singh KRB, Singh AK, et al. Potentialities of selenium nanoparticles in biomedical science. New J Chem. 2021;45(6):2849–2878.
  • Zhu X, Gong Y, Liu Y, et al. Ru@CeO2 yolk shell nanozymes: oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials. 2020;242:119923.
  • Lejeune A, Cabrol A, Lebullenger R, et al. Novel and sustainable catalytic ruthenium-doped glass foam for thermocatalytic oxidation of volatile organic compounds: an experimental and modeling study. Ind. Eng. Chem. Res. 2020;59(33):14758–14766.
  • Chen R, Zhang J, Chelora J, et al. Ruthenium(II) complex incorporated UiO-67 metal–organic framework nanoparticles for enhanced Two-Photon fluorescence imaging and photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9(7):5699–5708.
  • Frasconi M, Liu Z, Lei J, et al. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J Am Chem Soc. 2013;135(31):11603–
  • Akanda M, Getti G, Nandi U, et al. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int. J. Pharm. 2021;599:120416.
  • Huang Y, He L, Liu W, et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34(29):7106–7116.
  • Yu N, Zhu K-J, Ma S-J, et al. The total flavonoids of Clerodendrum bungei suppress A549 cells proliferation, migration, and invasion by impacting Wnt/β-catenin signaling. World J Tradit Chin Med. 2017;3:15–20.
  • Wang Q, Alshaker H, Böhler T, et al. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep. 2017;7(1):5901.
  • Rödel M, Baumann K, Groll J, et al. Simultaneous structuring and mineralization of silk fibroin scaffolds. J Tissue Eng. 2018;9:2041731418788509.
  • Zhu G, Sun Z, Hui P, et al. Composite film with antibacterial gold nanoparticles and silk fibroin for treating multidrug-resistant E. coli-infected wounds. ACS Biomater Sci Eng. 2021;7(5):1827–1835.
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(II)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 2021;50(44):16311–16325.
  • Kalaiarasi G, Subarkhan MM, Fathima Safwana CK, et al. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: Synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorganica Chim Acta. 2022;535:120863.
  • Giriraj K, Mohamed Kasim MS, Balasubramaniam K, et al. Various coordination modes of new coumarin schiff bases toward cobalt (III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organomet Chem. 2022;36:e6536.
  • Pilliadugula R, Haribabu J, Mohamed Subarkhan MK, et al. Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J Sci Adv Mater Devices. 2021;6(3):351–363.
  • Wang Y, Jin J, Shu L, et al. New organometallic ruthenium(II) compounds synergistically show cytotoxic, antimetastatic and antiangiogenic activities for the treatment of metastatic cancer, chem. Chemistry. 2020;26(66):15170–15182.
  • Mohamed Kasim MS, Sundar S, Rengan R. Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: Investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front. 2018;5(3):585–596.
  • Wang X, Zhang Q, Zou L, et al. Facile-synthesized ultrasmall CuS nanocrystals as drug nanocarriers for highly effective chemo–photothermal combination therapy of cancer. RSC Adv. 2016;6(25):20949–20960.
  • Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev. 2013;42(17):7289–7325.
  • Mohamed Subarkhan MK, Ren L, Xie B, et al. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur. J. Med. Chem. 2019;179:246–256.
  • Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, et al. Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans. 2020;49(32):11385–11395.
  • Mohan N, Mohamed Subarkhan MK, Ramesh R. Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J. Organomet. Chem. 2018;859:124–131.
  • Subarkhan MM, Prabhu RN, Kumar RR, et al. Antiproliferative activity of cationic and neutral thiosemicarbazone copper(II) complexes. RSC Adv. 2016;6(30):25082–25093.
  • Velmurugan P, Shim J, Bang K-S, et al. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity. J Photochem Photobiol B. 2016;160:102–109.
  • Türk S, Altınsoy I, Efe GÇ, et al. A novel multifunctional NCQDs-based injectable self-crosslinking and in situ forming hydrogel as an innovative stimuli responsive smart drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2021;121:111829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.