314
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics

ORCID Icon, , , , , & show all
Pages 2433-2471 | Received 05 Jun 2022, Accepted 16 Jul 2022, Published online: 28 Jul 2022

References

  • De Cicco P, Catani MV, Gasperi V, et al. Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients. 2019;11(7):1514.
  • Hussain Z, Rahim MA, Jan N, et al. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release. 2021;335:130–157.
  • Pilevarzadeh M, Amirshahi M, Afsargharehbagh R, et al. Global prevalence of depression among breast cancer patients: a systematic review and Meta-analysis. Breast Cancer Res Treat. 2019;176(3):519–533.
  • WHO. Breast cancer. WHO; 2018.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019, CA. Cancer J Clin. 2019;69(1):7–34.
  • WHO | Breast cancer, (n.d.).
  • Luo Y, Prestwich G. Cancer-targeted polymeric drugs. Curr Cancer Drug Targets. 2002;2(3):209–226.
  • Igarashi E. Factors affecting toxicity and efficacy of polymeric nanomedicines. Toxicol Appl Pharmacol. 2008;229(1):121–134.
  • Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release. 2021;337:589–611.
  • Wu JS, Li JX, Shu N, et al. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 2022;15(1):510–518.
  • Sharma G, Anabousi S, Ehrhardt C, et al. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J Drug Target. 2006;14(5):301–310.
  • Nitheesh Y, Pradhan R, Hejmady S, et al. Surface engineered nanocarriers for the management of breast cancer. Mater Sci Eng C Mater Biol Appl. 2021;130:112441.
  • Singh S, Numan A, Somaily HH, et al. Nano-enabled strategies to combat methicillin-resistant Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl. 2021;129:112384.
  • Mishra P, Handa M, Ujjwal RR, et al. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf B Biointerfaces. 2021;208:112050.
  • Gad A, Kydd J, Piel B, et al. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int J Nanomed Nanosurg. 2016. doi:10.16966/2470-3206.116.
  • Zhuo F, Abourehab MAS, Hussain Z. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym. 2018;197:478–489.
  • Dawoud M, Abourehab MAS, Abdou R. Monoolein cubic nanoparticles as novel carriers for docetaxel. J. Drug Deliv. Sci. Technol. 2020;56:101501.
  • Bashir M, Ahmad J, Asif M, et al. Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-Inflammatory effect: in vitro and in vivo evaluation. Int J Nanomed. 2021;16:1457–1472.
  • Islam N, Irfan M, Zahoor AF, et al. Improved bioavailability of ebastine through development of transfersomal oral films. Pharmaceutics. 2021;13(8):1315.
  • Du YQ, Yang XX, Li WL, et al. A cancer-targeted drug delivery system developed with gold nanoparticle mediated DNA-doxorubicin conjugates. RSC Adv. 2014;4(66):34830–34835.
  • Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5(2):151–159.
  • Zhou Q, Zhang L, Yang T, et al. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed. 2018;13:2921–2942.
  • Amjad MW, Kesharwani P, Mohd Amin MCI, et al. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog. Polym. Sci. 2017;64:154–181.
  • Abourehab MAS, Ahmed OAA, Balata GF, et al. Self-assembled biodegradable polymeric micelles to improve dapoxetine delivery across the blood–brain barrier. IJN. 2018;ume 13:3679–3687.
  • Liu CC, Zhao JJ, Zhang R, et al. Multifunctionalization of graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs. Am J Transl Res. 2017;9(12):5197–5219.
  • Elhissi AMA, Ahmed W, Hassan IU, et al. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv. 2012;2012:837327–837310.
  • Chadar R, Afzal O, Alqahtani SM, et al. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Surf B Biointerfaces. 2021;208:112044.
  • Abedi-Gaballu F, Dehghan G, Ghaffari M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–190.
  • Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release. 2021;340:221–242.
  • Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur. Polym. J. 2021;158:110683.
  • Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. J. Biomater Sci Polym Ed. 2021;1–29. https://doi.org/10.1080/09205063.2021.1938859.
  • Dubey SK, Kali M, Hejmady S, et al. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur J Pharm Sci. 2021;164:105890.
  • Gorain B, Tekade M, Kesharwani P, et al. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov. Today. 2017;22(4):652–664.
  • Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B. 2013;1(34):4199–4211.
  • Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005;30(3–4):294–324.
  • Wang H, Huang Q, Chang H, et al. Stimuli-responsive dendrimers in drug delivery. Biomater Sci. 2016;4(3):375–390.
  • Sarin H. On the future development of optimally-sized lipid-insoluble systemic therapies for CNS solid tumors and other neuropathologies. Recent Pat CNS Drug Discov. 2010;5(3):239–252.
  • Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine. 2016;11:1–12.
  • Sharma A, Gautam SP, Gupta AK. Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem. 2011;19(11):3341–3346.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014;39(2):268–307.
  • Kesharwani P, Banerjee S, Gupta U, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today. 2015;18(10):565–572.
  • Gorzkiewicz M, Konopka M, Janaszewska A, et al. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem. 2020;95:103504.
  • Gupta U, Dwivedi SKD, Bid HK, et al. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int J Pharm. 2010;393(1–2):185–196.[20382210.
  • Kaur D, Jain K, Mehra NK, et al. A review on comparative study of PPI and PAMAM dendrimers. J. Nanoparticle Res. 2016;18:146.
  • Kharwade R, More S, Warokar A, et al. Starburst pamam dendrimers: synthetic approaches, surface modifications, and biomedical applications. Arab. J. Chem. 2020;13(7):6009–6039.
  • Mignani S, Rodrigues J, Tomas H, et al. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev. 2018;47(2):514–532.
  • Nanjwade BK, Bechra HM, Derkar GK, et al. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009;38(3):185–196.
  • Kesharwani P, Tekade RK, Jain NK. Formulation development and in vitro-in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine (Lond). 2014;9(15):2291–2308. ).
  • Cancer Pathophysiology, (n.d.).
  • Adamsen L, Quist M, Andersen C, et al. Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial. BMJ. 2009;339(oct13 1):b3410–898.
  • Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283–298.
  • NCI SEER public-use data: applications and limitations in oncology research - PubMed, (n.d.).
  • A pilot study of trimodality breast imaging surveillance in young women at high risk of breast cancer in Western Australia - PubMed, (n.d.).
  • Shah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–399.
  • Malins DC, Gunselman SJ, Holmes EH, et al. The etiology of breast cancer characteristic alterations in hydroxyl radical‐induced dna base lesions during oncogenesis with potential for evaluating incidence risk. Cancer. 1993;71(10):3036–3043.
  • Núñez C, Capelo JL, Igrejas G, et al. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials. 2016;97:34–50.
  • Woo SH, Seo SK, Park Y, et al. Dichloroacetate potentiates tamoxifen-induced cell death in breast cancer cells via downregulation of the epidermal growth factor receptor. Oncotarget. 2016;7(37):59809–59819.
  • Breast Cancer Pathophysiology | Oncology Nurses Quality Improvement Series, (n.d.).
  • Shokooh MK, Emami F, Duwa R, et al. Triple-negative breast cancer treatment meets nanoparticles: Current status and future direction. J. Drug Deliv. Sci. Technol. 2022;71:103274.
  • American Cancer Society. Breast Cancer Risk Factors You Cannot Change - Google Search, (n.d.).
  • Hu J, Vecchia CL, de Groh M, Canadian Cancer Registries Epidemiology Research Group, et al. Dietary cholesterol intake and cancer. Ann Oncol. 2012;23(2):491–500.
  • Nelson ER, Wardell SE, Jasper JS, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342(6162):1094–1098.
  • DuSell CD, Umetani M, Shaul PW, et al. 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol. 2008;22(1):65–77.
  • 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen - Google Search, (n.d.).
  • Nelson ER, yi Chang C, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab. 2014;25(12):649–655.
  • ational Cancer Institute. Genetics of Breast and Gynecological Cancers - Google Search, (n.d.).
  • American Cancer Society. Breast Cancer HER2 Status. Available at: https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-her2-status.html. Accessed: September 9, 2019. - Google Search, (n.d.).
  • Rakovich TY, Mahfoud OK, Mohamed BM, et al. Highly sensitive single domain antibody-quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. ACS Nano. 2014;8(6):5682–5695.
  • Sharma AK, Gothwal A, Kesharwani P, et al. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today. 2017;22(2):314–326.
  • Bear HD, Tang G, Rastogi P, et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. Obstet. Gynecol. Surv. 2013;68(3):201–202.
  • Birdhariya B, Kesharwani P, Jain NK. Effect of surface capping on targeting potential of folate decorated poly (propylene imine) dendrimers. Drug Dev. Ind. Pharm. 2015;41:1393–1399.
  • Kesharwani P, Choudhury H, Meher JG, et al. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog. Mater. Sci. 2019;103:484–508.
  • Su S, Tian Y, Li Y, et al. “Triple-punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy. ACS Nano. 2015;9(2):1367–1378.
  • Thanikachalam PV, Ramamurthy S, Wong ZW, et al. Current attempts to implement microRNA-based diagnostics and therapy in cardiovascular and metabolic disease: a promising future. Drug Discov Today. 2018;23(3):460–480.
  • Singh S, Hassan D, Aldawsari HM, et al. Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discov Today. 2020;25(1):223–229.
  • Gorain B, Choudhury H, Pandey M, et al. Dendrimer-based nanocarriers in lung cancer therapy. In: Nanotechnology-based targeted Drug Delivery Systems for Lung Cancer. Elsevier; 2019. p. 161–192.
  • Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today. 2015;20:536–547.
  • Choudhury H, Pandey M, Chin PX, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res. 2018;8(5):1545–1563.
  • Gorain B, Choudhury H, Nair AB, et al. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today. 2020;25(7):1174–1188.
  • Choudhury H, Pandey M, Wen LP, et al. Folic acid conjugated nanocarriers for efficient targetability and promising anticancer efficacy for treatment of breast cancer: a review of recent updates. Curr. Pharm. Des. 2020;26:5365–5379.
  • Luong D, Kesharwani P, Deshmukh R, et al. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14–29.
  • Guo Y, Zhao Y, Han M, et al. Codendrimer (PAG) from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendron: evaluation as drug carrier. J Mater Chem B. 2013;1(44):6078–6084.
  • Zhao Y, Guo Y, Li R, et al. Methotrexate nanoparticles prepared with codendrimer from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendrons: antitumor efficacy in vitro and in vivo. Sci Rep. 2016;6:28983.
  • Oddone N, Lecot N, Fernández M, et al. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. J. Nanobiotechnology. 2016;14:45. doi:10.1186/s12951-016-0197-6
  • Peng J, Zhou W, Xia X, et al. Encapsulation of acetylshikonin by polyamidoamine dendrimers for preparing prominent nanoparticles. AAPS PharmSciTech. 2014;15(2):425–433.
  • Sahoo RK, Gothwal A, Rani S, et al. PEGylated dendrimer mediated delivery of bortezomib: drug conjugation versus encapsulation. Int J Pharm. 2020;584:119389.
  • Li T, Smet M, Dehaen W, et al. Selenium-platinum coordination dendrimers with controlled anti-Cancer activity. ACS Appl Mater Interfaces. 2016;8(6):3609–3614.
  • Gurdag S, Khandare J, Stapels S, et al. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem. 2006;17(2):275–283.
  • Bielawski K, Bielawska A, Muszyńska A, et al. Cytotoxic activity of G3 PAMAM-NH 2 dendrimer-chlorambucil conjugate in human breast cancer cells. Environ Toxicol Pharmacol. 2011;32(3):364–372.
  • Abdel-Rahman MA, Al-Abd AM. Thermoresponsive dendrimers based on oligoethylene glycols: design, synthesis and cytotoxic activity against MCF-7 breast cancer cells. Eur J Med Chem. 2013;69:848–854.
  • Shan H, Dou W, Zhang Y, et al. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale. 2020;12(43):22268–22280.
  • Taghavi Pourianazar N, Gunduz U. CpG oligodeoxynucleotide-loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells. Biomed Pharmacother. 2016;78:81–91.
  • Nosrati H, Adibtabar M, Sharafi A, et al. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev Ind Pharm. 2018;44(8):1377–1384.
  • Kojima C, Suehiro T, Watanabe K, et al. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater. 2013;9(3):5673–5680.
  • Khodadust R, Unsoy G, Gunduz U. Development of poly (I: C) modified doxorubicin loaded magnetic dendrimer nanoparticles for targeted combination therapy. Biomed Pharmacother. 2014;68(8):979–987.
  • Parsian M, Mutlu P, Yalcin S, et al. Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. Int J Pharm. 2016;515(1-2):104–113.
  • Matai I, Sachdev A, Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater Sci. 2015;3(3):457–468.
  • Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity: let’s meet the challenge. Int J Pharm. 2010;394(1–2):122–142.
  • Kesharwani P, Gothwal A, Iyer AK, et al. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today. 2018;23(2):300–314.
  • Dwivedi N, Shah J, Mishra V, et al. Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed. 2016;27(7):557–580.
  • Kesharwani P, Tekade RK, Jain NK. Dendrimer generational nomenclature: the need to harmonize. Drug Discov. Today. 2015;20(5):497–499.
  • Sung SA, Kim DH, Oh KH, et al. The role of cathepsin B in peritoneal fibrosis due to peritoneal dialysis. Int J Nephrol. 2019;2019:4150656.
  • Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev. 2019;151-152:130–151.
  • Turk V, Turk B, Turk D. New embo members’ review: lysosomal cysteine proteases: facts and opportunities. Embo J. 2001;20(17):4629–4633.
  • Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater. 2017;55:153–162.
  • Zhang C, Pan D, Luo K, et al. Peptide dendrimer-doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv Healthc Mater. 2014;3(8):1299–1308.
  • Thakur S, Tekade RK, Kesharwani P, et al. The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers. J. Nanoparticle Res. 2013;15:1625. doi:10.1007/s11051-013-1625-2
  • Li N, Cai H, Jiang L, et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9(8):6865–6877.
  • Tao JJ, Castel P, Radosevic-Robin N, et al. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Sci. Signal. 2014;7(318):1–10.
  • Rakha EA, El-Sayed ME, Green AR, et al. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.
  • Masuda H, Zhang D, Bartholomeusz C, et al. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136(2):331–345.
  • Liu C, Gao H, Zhao Z, et al. Improved tumor targeting and penetration by a dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J. Mater. Chem. B. 2019;7(23):3724–3736. )
  • Thakur S, Kesharwani P, Tekade RK, et al. Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer (Guildf). 2015;59:67–92.
  • Bertuzzi DL, Braga CB, Perli G, et al. Water-soluble well-defined bifunctional ferrocenyl dendrimer with anti-cancer activity. Eur. J. Inorg. Chem. 2022;2022:e202101084.
  • Morath I, Jung C, Lévêque R, et al. Differential recruitment of CD44 isoforms by ERBB ligands reveals an involvement of CD44 in breast cancer. Oncogene. 2018;37(11):1472–1484.
  • Jeannot V, Gauche C, Mazzaferro S, et al. Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. J Control Release. 2018;275:117–128.
  • Mattheolabakis G, Milane L, Singh A, et al. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23(7-8):605–618.
  • Herrera MB, Bussolati B, Bruno S, et al. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int. 2007;72(4):430–441.
  • Kesharwani P, Xie L, Mao G, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces. 2015;136:413–423.
  • Choudhury H, Pandey M, Yin TH, et al. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C. 2019;101:596–613.
  • Choudhury H, Gorain B, Pandey M, et al. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int. J. Pharm. 2019;565:509–522.
  • Guo XL, Kang XX, Wang YQ, et al. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater. 2019;84:367–377.
  • Wu P, Sun Y, Dong W, et al. Enhanced anti-tumor efficacy of hyaluronic acid modified nanocomposites combined with sonochemotherapy against subcutaneous and metastatic breast tumors. Nanoscale. 2019;11(24):11470–11483.
  • Xu C, Zhao H, Chen H, et al. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther. 2015;9:4953–4964.
  • Corcoran KE, Trzaska KA, Fernandes H, et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One. 2008;3(6):e2563–10.
  • Ablett MP, O'Brien CS, Sims AH, et al. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity. Oncotarget. 2014;5(3):599–612.
  • Tamamura H, Tsutsumi H, Masuno H, et al. Development of low molecular weight CXCR4 antagonists by exploratory structural tuning of cyclic tetra- and pentapeptide-scaffolds towards the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Curr Med Chem. 2007;14(1):93–102.
  • Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–56.
  • Chittasupho C, Anuchapreeda S, Sarisuta N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm. 2017;119:310–321.
  • Révillion F, Bonneterre J, Peyrat JP. ERBB2 oncogene in human breast cancer and its clinical significance. Eur J Cancer. 1998;34(6):791–808.
  • Senkus E, Cardoso F, Pagani O. Time for more optimism in metastatic breast cancer? Cancer Treat Rev. 2014;40(2):220–228.
  • Figueroa-Magalhães MC, Jelovac D, Connolly R, et al. Treatment of HER2-positive breast cancer. Breast. 2014;23(2):128–136.
  • Pinto AC, Ades F, de Azambuja E, et al. Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast. 2013;22:S152–S155.
  • Chan C, Cai Z, Reilly RM. Trastuzumab labeled to high specific activity with 111in by conjugation to G4 PAMAM dendrimers derivatized with multiple DTPA chelators exhibits increased cytotoxic potency on HER2-positive breast cancer cells. Pharm Res. 2013;30(8):1999–2009.
  • Cai Z, Chattopadhyay N, Yang K, et al. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl. Med. Biol. 2016;43(12):818–826.
  • Kulhari H, Pooja D, Shrivastava S, et al. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep. 2016;6:23179–23113.[27052896.
  • Tekade RK, Sun X. The warburg effect and glucose-derived cancer theranostics. Drug Discov Today. 2017;22(11):1637–1653.
  • Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta. 2013;1835(2):164–169.
  • Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–662.
  • Torres-Pérez SA, del M, Ramos-Godínez P, et al. Glycosylated one-step PAMAM dendrimers loaded with methotrexate for target therapy in breast cancer cells MDA-MB-231. J. Drug Deliv. Sci. Technol. 2020;58:101769. )
  • Pawar SK, Badhwar AJ, Kharas F, et al. Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery. Int J Pharm. 2012;436(1-2):183–193.
  • Kumar P, Paknikar KM, Gajbhiye V. A robust pH-sensitive unimolecular dendritic nanocarrier that enables targeted anti-cancer drug delivery via GLUT transporters. Colloids Surf B Biointerfaces. 2018;171:437–444.
  • Satsangi A, Roy SS, Satsangi RK, et al. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy. Biomaterials. 2015;59:88–101.
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 2015;32(4):1438–1450.
  • Hu G, Chun X, Wang Y, et al. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget. 2015;6(38):41258–41274.
  • Kong X, Yu K, Yu M, et al. A novel multifunctional poly(amidoamine) dendrimeric delivery system with superior encapsulation capacity for targeted delivery of the chemotherapy drug 10-hydroxycamptothecin. Int J Pharm. 2014;465(1-2):378–387.
  • Hong P, Li W, Li J. Applications of aptasensors in clinical diagnostics. Sensors (Basel). 2012;12(2):1181–1193.
  • Kazarian A, Blyuss O, Metodieva G, et al. Testing breast cancer serum biomarkers for early detection and prognosis in pre-diagnosis samples. Br J Cancer. 2017;116(4):501–508.
  • Gothwal A, Kesharwani P, Gupta U, et al. Dendrimers as an effective nanocarrier in cardiovascular disease. Curr Pharm Des. 2015;21(30):4519–4526.
  • Li S, Hu R, Yang C, et al. An ultrasensitive bioluminogenic probe of γ-Glutamyltranspeptidase in vivo and in human serum for tumor diagnosis. Biosens Bioelectron. 2017;98:325–329.
  • Even-Desrumeaux K, Baty D, Chames P. State of the art in tumor antigen and biomarker discovery. Cancers (Basel). 2011;3(2):2554–2596.
  • Chi Y, Yao L, Hu X, et al. The BMP inhibitor DAND5 in serum predicts poor survival in breast cancer. Oncotarget. 2016;7(12):14951–14962.
  • Kesharwani P, Tekade RK, Gajbhiye V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine. 2011;7(3):295–304.
  • Mohammadi S, Salimi A, Hamd-Ghadareh S, et al. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal Biochem. 2018;557:18–26.
  • Zhu H, Dale PS, Caldwell CW, et al. Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors. Anal Chem. 2009;81(24):9858–9865.
  • Mendoza-Nava H, Ferro-Flores G, De María Ramírez F, et al. Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu-dendrimer-AuNP-folate-bombesin nanoprobe located inside cancer cells. Mol Imaging. 2017;16:153601211770476.
  • Zhu J, Zheng L, Wen S, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2014;35(26):7635–7646.
  • Bellotti E, Cascone MG, Barbani N, et al. Targeting cancer cells overexpressing folate receptors with new terpolymer-based nanocapsules: toward a novel targeted DNA delivery system for cancer therapy. Biomedicines. 2021;9(9):1275.
  • Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790–810.
  • Cheung A, Bax HJ, Josephs DH, et al. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7(32):52553–52574.
  • Narmani A, Yavari K, Mohammadnejad J. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids Surf B Biointerfaces. 2017;159:232–240.
  • Xiong H, Liu S, Wei T, et al. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo. J Control Release. 2020;325:198–205.
  • Waller J, DeStefano K, Chiu B, et al. An update on nanoparticle usage in breast cancer imaging. Nano Sel. 2022;3(7):1103–1111.
  • Otis JB, Zong H, Kotylar A, et al. Dendrimer antibody conjugate to target and image HER-2 overexpressing cancer cells. Oncotarget. 2016;7(24):36002–36013.
  • Li K, Zhang Z, Zheng L, et al. Arg-Gly-ASP-D-Phe-Lys peptide-modified PEGylated dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of breast carcinoma. Nanomedicine (Lond). 2015;10(14):2185–2197.
  • Wang Y, Hu W, Ding B, et al. cRGD mediated redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for efficiently intracellular antitumor drug delivery. Colloids Surf B Biointerfaces. 2020;194:111195.
  • Duffy MJ. Biomarkers for prostate cancer: Prostate-specific antigen and beyond. Clin Chem Lab Med. 2020;58(3):326–339.[31714881.
  • Scott A, Salgia R. Biomarkers in lung cancer: from early detection to novel therapeutics and decision making. Biomark Med. 2008;2(6):577–586.
  • Seijo LM, Peled N, Ajona D, et al. Biomarkers in lung cancer screening: Achievements, promises, and challenges. J Thorac Oncol. 2019;14(3):343–357.
  • Mousa L, Salem ME, Mikhail S. Biomarkers of angiogenesis in colorectal cancer. Biomark Cancer. 2015;7(Suppl 1):13–19.
  • Nikolouzakis TK, Falzone L, Lasithiotakis K, et al. Current and future trends in molecular biomarkers for diagnostic, prognostic, and predictive purposes in Non-Melanoma skin cancer. JCM. 2020;9(9):2868. 20209, page2868.
  • Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;122014 12(1):11–26.
  • Marcu LG, Reid P, Bezak E. The promise of novel biomarkers for head and neck cancer from an imaging perspective. IJMS. 2018;19(9):2511. 2018, Vol. 19, Page 2511
  • Vtorushin SV, Khristenko KY, Zavyalova MV, et al. THE PHENOMENON OF MULTI-DRUG RESISTANCE IN THE TREATMENT OF MALIGNANT TUMORS, 2014.
  • Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci U S A. 2015;112(10):2978–2983.
  • Zhang J, Liu D, Zhang M, et al. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. Int J Nanomedicine. 2016;11:3677–3690.
  • Pan L, Liu J, He Q, et al. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials. 2013;34(11):2719–2730.
  • Milane L, Ganesh S, Shah S, et al. Multi-modal strategies for overcoming tumor drug resistance: hypoxia, the warburg effect, stem cells, and multifunctional nanotechnology. J Control Release. 2011;155(2):237–247.
  • Xu W, Gao X, Ge P, et al. Dendrimer-like mesoporous silica nanospheres with suitable surface functionality to combat the multidrug resistance. Int J Pharm. 2018;553(1-2):349–362.
  • Wang M, Li Y, Huangfu M, et al. Pluronic-attached polyamidoamine dendrimer conjugates overcome drug resistance in breast cancer. Nanomedicine (Lond). 2016;11(22):2917–2934.
  • Gu J, Fang X, Hao J, et al. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials. 2015;45:99–114.
  • Nguyen TTC, Nguyen CK, Nguyen TH, et al. Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 2):992–999.
  • Gu Y, Guo Y, Wang C, et al. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):572–585.
  • Khakinahad Y, Sohrabi S, Razi S, et al. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: a smart nano-device for suppression of breast cancer. Biomed. Eng. Lett. 2022;2022:1–13.
  • Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm. 2019;136:18–28.
  • Li J, Liu J, Guo N, et al. Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes. Int J Pharm. 2016;511(1):436–445.
  • Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–7150.
  • de Ruijter TC, Veeck J, de Hoon JPJ, et al. Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol. 2011;137(2):183–192.
  • Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today. 2015;20(5):536–547.
  • Luong D, Sau S, Kesharwani P, et al. Polyvalent Folate-Dendrimer-Coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules. 2017;18(4):1197–1209.
  • Hu K, Law JH, Fotovati A, et al. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14(1):R22.
  • Expression of Twist and Wnt in Human Breast Cancer - PubMed, (n.d.).
  • Wu P-H, Onodera Y, Ichikawa Y, et al. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int J Nanomedicine. 2017;12:5069–5085.
  • Pandi P, Jain A, Raju S, et al. Therapeutic approaches for the delivery of TNF-α siRNA. Ther Deliv. 2017;8(5):343–355.
  • Ionov M, Wróbel D, Gardikis K, et al. Effect of phosphorus dendrimers on DMPC lipid membranes. Chem. Phys. Lipids. 2012;165(4):408–413. in: Chem Phys Lipids
  • Jain A, Mahira S, Majoral J, et al. Dendrimer mediated targeting of siRNA against polo‐like kinase for the treatment of triple negative breast cancer. J. Biomed. Mater. Res. 2019;107(9):1933–1944. ) jbma
  • Liu X, Zhou J, Yu T, et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew Chem Int Ed Engl. 2014;53(44):11822–11827.
  • Yu T, Liu X, Bolcato-Bellemin A-L, et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed Engl. 2012;51(34):8478–8484.
  • Finlay J, Roberts CM, Lowe G, et al. RNA-Based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis. Biomed Res Int. 2015;2015:382745. ).
  • Ghosh S, Ghosal K, Mohammad SA, et al. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem. Eng. J. 2019;373:468–484.
  • Finney L, Mandava S, Ursos L, et al. X-ray flourescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci U S A. 2007;104(7):2247–2252.
  • V P, TG S, K K, et al. Serum levels of metal ions in female patients with breast cancer. J. Clin. Diagn Res. 2015;9:BC25-c27.
  • Choi JS, Nam K, Park JY, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J Control Release. 2004;99(3):445–456.
  • Tung CH, Weissleder R. Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev. 2003;55(2):281–294.
  • Won YW, Yoon SM, Lee KM, et al. Poly(oligo-D-arginine) with internal disulfide linkages as a cytoplasm-sensitive carrier for siRNA delivery. Mol Ther. 2011;19(2):372–380.
  • Nam HY, Nam K, Lee M, et al. Dendrimer type bio-reducible polymer for efficient gene delivery. J Control Release. 2012;160(3):592–600.
  • Domański DM, Klajnert B, Bryszewska M. Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry. 2004;63(1-2):189–191.
  • Shcharbin D, Janicka M, Wasiak M, et al. Serum albumins have five sites for binding of cationic dendrimers. Biochim Biophys Acta. 2007;1774(7):946–951.
  • Wang P, Zhao XH, Wang ZY, et al. Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment. Cancer Lett. 2010;298(1):34–49.
  • Nasr M, Nafee N, Saad H, et al. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. Eur J Pharm Biopharm. 2014;88(1):216–225.
  • Kotula JW, Pratico ED, Ming X, et al. Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther. 2012;22(3):187–195.
  • Taghdisi SM, Danesh NM, Ramezani M, et al. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm. 2016;102:152–158.
  • won Kim J, jae Lee J, Choi JS, et al. Electrostatically assembled dendrimer complex with a high-affinity protein binder for targeted gene delivery. Int J Pharm. 2018;544(1):39–45.
  • Yun M, Kim DY, jae Lee J, et al. A high-affinity repebody for molecular imaging of EGFR-expressing malignant tumors. Theranostics. 2017;7(10):2620–2633.
  • Pan B, Cui D, Sheng Y, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67(17):8156–8163.
  • Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res. 2020;10(3):721–725.
  • Zheng C, Li M, Ding J. Challenges and opportunities of nanomedicines in clinical translation. BIO Integr. 2021;2(2):57–60.
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol. 2018;9:790–714.
  • Debnath S, Saloum D, Dolai S, et al. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anticancer Agents Med Chem. 2013;13(10):1531–1539.
  • dendrimer-doxorubicin conjugate for enhanced therapeutic effect for cancer - Google Search, (n.d.).
  • Dendrimerfunctionalizedcarbonquantumdotforselectivedetectionof breastcancerandgenetherapy - Search Results - PubMed, (n.d.).
  • Lee IH, Yu MK, Kim IH, et al. A duplex oligodeoxynucleotide-dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy. J Control Release. 2011;155(1):88–95.
  • Pang CT, Ammit AJ, Ong YQE, et al. Para-Sulfonatocalix[4]arene and polyamidoamine dendrimer nanocomplexes as delivery vehicles for a novel platinum anticancer agent. J Inorg Biochem. 2017;176:1–7.
  • Mollazade M, Nejati-Koshki K, Akbarzadeh A, et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: Possible inhibition of telomerase. Asian Pac J Cancer Prev. 2013;14(11):6925–6928.
  • Matai I, Sachdev A, Gopinath P. Self-assembled hybrids of fluorescent carbon dots and PAMAM dendrimers for epirubicin delivery and intracellular imaging. ACS Appl Mater Interfaces. 2015;7(21):11423–11435.
  • Liu L, Kuang Y, Yang H, et al. An amplification strategy using DNA-Peptide dendrimer probe and mass spectrometry for sensitive MicroRNA detection in breast cancer. Anal Chim Acta. 2019;1069:73–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.