102
Views
0
CrossRef citations to date
0
Altmetric
Articles

Physicochemical and biological properties of nanohydroxyapatite grafted with star-shaped poly(ε-caprolactone)

, , , , & ORCID Icon
Pages 2353-2384 | Received 21 May 2022, Accepted 19 Jul 2022, Published online: 01 Aug 2022

References

  • Frier B. Roman life expectancy: Ulpian’s evidence. Harv Studies Class Philol. 1982;86:213–251.
  • Ott HC, Matthiesen TS, Goh S, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–221.
  • Hiles M, Levitsky S. Interactive biomaterials: taking surgery to the next level. Int Surg. 2005;90:S13–S20.
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed. 2001;40(22):4128–4158.
  • Tan J, Saltzman WM. Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials. 2004;25(17):3593–3601.
  • Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–1017.
  • Biggs MJ, Richards RG, Gadegaard N, et al. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A. 2008;18:399–404.
  • Lamers E, Walboomers FX, Domanski M, et al. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials. 2010;31(12):3307–3316.
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–2534.
  • Hench LL. Bioceramics, from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–1510. 10.1111/j.1151-2916.1991.tb07132.x
  • Kumar D, Gittings JP, Turner IG, et al. Polarization of hydroxyapatite: Influence on osteoblast cell proliferation. Acta Biomater. 2010;6(4):1549–1554.
  • Nakamura S, Kobayashi T, Yamashita K. Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges. J Biomed Mater Res. 2002;61(4):593–599.
  • Kobayashi T, Nakamura S, Yamashita K. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res. 2001;57(4):477–484.
  • Gittings JP, Bowen CR, Turner IG, et al. Polarization behavior of calcium phosphate based ceramics. Mater Sci Forum. 2008;587–588:91–95.
  • Orlovski VP, Zakharov NA, Ivanov AA. Structural transition and dielectric characteristics of high purity hydroxyapatite. Inorg Mater. 1996;32:654–656.
  • Kim HM, Rey C, Glimcher MJ. X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage. Calcif Tissue Int. 1996;59(1):58–63.
  • Kim HM, Kim Y, Park SJ, et al. Thin film of low-crystalline calcium phosphate apatite formed at low temperature. Biomaterials. 2000;21(11):1129–1134.
  • Boissard CIR, Bourban PE, Tami AE, et al. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomater. 2009;5(9):3316–3327.
  • Jayabalan M, Shalumon KT, Mitha MK, et al. Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopedic applications. Acta Biomater. 2010;6(3):763–775.
  • Hong Z, Zhang P, He C, et al. Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials. 2005;26(32):6296–6304.
  • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3331.
  • Bezwada RS, Jamiolkowski DD, Lee IY, et al. Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials. 1995;16(15):1141–1148.
  • Khor HL, Ng KW, Htay AS, et al. Preliminary study of a polycaprolactone membrane utilized as epidermal substrate. J Mater Sci Mater Med. 2003;14(2):113–120.
  • Kim HW, Knowles JC, Kim HE. Development of hydroxyapatite bone scaffold for controlled drug release via poly(ε-caprolactone) and hydroxyapatite hybrid coating. J Biomed Mater Res B Appl Biomater. 2004;70(2):240–249.
  • Ural E, Kesenci K, Fambri L, et al. Poly(d,l-lactide/-caprolactone)/hydroxyapatite composites. Biomaterials. 2000;21(21):2147–2154.
  • Chrissafis K, Antoniadis G, Paraskevopoulos KM, et al. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone) nanocomposites. Compos Sci Technol. 2007;67(10):2165–2174.
  • Neuendorf RE, Saiz E, Tomsia AP, et al. Adhesion between biodegradable polymers and hydroxyapatite: relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 2008;4(5):1288–1296.
  • Sanda F, Sanada H, Hibasaki Y, et al. Star polymer synthesis from ɛ-caprolactone utilizing polyol/protonic acid initiator. Macromolecules. 2002;35(3):680–683.
  • Dong CM, Qiu KY, Gu ZW, et al. Synthesis of star-shaped poly(ε-caprolactone)-b-poly(dl-lactic acid-alt-glycolic acid) with multifunctional initiator and stannous octoate catalyst. Macromolecules. 2001;34(14):4691–4696.
  • Mehmanchi M, Shokrollahi P, Atai M, et al. Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite. J Bioact Comp Polym. 2012;27(5):467–480.
  • Xiao Y, Lang S, Wang Y, et al. Effect of surface grafted hydroxyapatite on the improved performance of hydroxyapatite/poly(ε-caprolactone) scaffold. Curr Nanosci. 2014;10(6):855–862.
  • Cho YS, Cho Y-S, Gwak S-J. Fabrication of polycaprolactone/nano hydroxyapatite (PCL/nHA) 3D scaffold with enhanced in vitro cell response via design for additive manufacturing (DfAM). Polymers. 2021;13(9):1394–1312.
  • Mortazavian H, Picquet GA, Lejnieks J, et al. Understanding the role of shape and composition of star-shaped polymers and their ability to both bind and prevent bacteria attachment on oral relevant surfaces. J Funct Biomater. 2019;10:1–16.
  • Theiler S, Mela P, Diamantouros SE, et al. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Biotechnol Bioeng. 2011;108(3):694–703.
  • Landi E, Tampieri A, Celotti G, et al. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20(14–15):2377–2387.
  • Monmaturapoj N. Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J Metals Mater Min. 2008;18:15–20.
  • Durrieu MC, Pallu S, Guillemot F, et al. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med. 2004;15(7):779–786.
  • Hunter WM, Greenwood FC. Preparation of iodine-131 labeled human growth hormone of high specific activity. Nature. 1962;194:495–498.
  • Stern HS, Zolle I, McAfee JG. Preparation of technetium (Tc99m)-labeled serum albumin (human). Int J Appl Radiat Isotop. 1965;16(4):283–288.
  • Mura-Galelli MJ, Voegel JC, Behr S, et al. Adsorption/desorption of human serum albumin on hydroxyapatite: a critical analysis of the Langmuir model. Proc Natl Acad Sci USA. 1991;88(13):5557–5561.
  • de Queiroz AAA, Barrak ER, Castro SC. Thermodynamic analysis of biomaterials. J Mol Struct Theochem. 1997;394(2-3):271–279.
  • International Organization for Standardization. Biological evaluation of medical devices. V. Tests for cytotoxicity: in vitro methods. ISO, editor. Vol. 10993-5. Geneva, Switzerland: International Organization for Standardization; 1999.
  • Gan Z, Fung JF, Jing X, et al. A novel laser light-scattering study of enzymatic biodegradation of poly(ε-caprolactone) nanoparticles. Polymer. 1999;40(8):1961–1967.
  • Leenslag JW, Pennings AJ. Synthesis of high-molecular-weight poly(l-lactide) initiated with tin 2-ethylhexanoate. Makromol Chem. 1987;188(8):1809–1814.
  • Valerio O, Pin JM, Misra M, et al. Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega. 2016;1(6):1284–1295.
  • Kowalski A, Duda A, Penczec S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. 1. Polymerization of ε-caprolactone. Macromol Rapid Commun. 1998;19:567–572.
  • Lele BS, Leroux JC. Synthesis of novel amphiphilic star-shaped poly(ε-caprolactone)-block-poly(N-(2-hydroxypropyl)methacrylamide) by combination of ring-opening and chain transfer polymerization. Polymer. 2002;43(21):5595–5606.
  • Calderon M, Graeser R, Kratz F, et al. Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg Med Chem Lett. 2009;19(14):3725–3728.
  • Zhang W, Zheng S, Guo Q. Synthesis and characterization of dendritic star-shaped poly(ε-caprolactone)-block-poly(l-lactide) block copolymers. J. Appl Polym Sci. 2007;106(1):417–424.
  • Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, et al. Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep. 2019;9(1):1–12.
  • Ferraz MP, Monteiro FJ, Serro AP, et al. Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO-P2O5 glass coatings. Biomaterials. 2001;22(23):3105–3112.
  • Vandiver J, Dean D, Patel N, et al. Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy. Biomaterials. 2005;26(3):271–283.
  • Weber N, Wendel HP, Kohn J. Formation of viscoelastic protein layers on polymeric surfaces relevant to platelet adhesion. J Biomed Mater Res A. 2005;72(4):420–427.
  • Vitte J, Benoliel AM, Pierres A, et al. Is there a predictable relationship between surface physical-chemical properties and cell behavior at the interface? Eur Cell Mater. 2004;7:52–63.
  • Johnson CA, Wu P, Lenhoff AM. Electrostatic and van der Waals contributions to protein adsorption: 2. Modeling of ordered arrays. Langmuir. 1994;10(10):3705–3713.
  • Sit PS, Marchant RE. Surface-dependent differences in fibrin assembly visualized by atomic force microscopy. Surf Sci. 2001;491(3):421–432.
  • Swain SK, Sarkar D. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl Surf Sci. 2013;286:99–103.
  • Young BR, Pitt WG, Cooper SL. Protein adsorption on polymeric biomaterials: I. Adsorption isotherms. J Colloid Interface Sci. 1988;124(1):28–43.
  • Golander CG, Lin YS, Hlady V, et al. Wetting and plasma protein adsorption studies using surfaces with a hydrophobicity gradient. Colloids Surf. 1990;49:289–302.
  • Malmsten M. Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids Surf B. 1995;3(5):297–308.
  • Patil S, Sandberg A, Heckert E, et al. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–4607.
  • Duracher D, Elaissari A, Mallet F, et al. Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)-poly(N-isopropylacrylamide) particles. Langmuir. 2000;16(23):9002–9008.
  • Prieto G, Sabín J, Ruso JM, et al. A study of the interaction between proteins and fully-fluorinated and fully-hydrogenated surfactants by ζ-potential measurements. Colloids Surf A Phys Chem. 2004;249(1–3):51–55.
  • Pitt CG, Gratzl MM, Kimmel GL, et al. Aliphatic polyesters. 2. The degradation of poly(d,l-lactide), poly(ε-caprolactone) and their copolymers in-vivo. Biomaterials. 1981;2(4):215–220.
  • Schmid RD, Verger R. Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl. 1998;37(12):1608–1633.
  • Brzozowski AM, Savage H, Verma CS, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000;39(49):15071–15082.
  • Miculescu F, Ciocan LT, Miculescu M, et al. Effect of heating process on microstructure level of cortical bone prepared for compositional analysis. Dig J Nanomater Biostruct. 2011;6:225–233.
  • Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–681.
  • Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49(2):155–166.
  • Wei J, Yoshinari M, Takemoto S, et al. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J Biomed Mater Res B Appl Biomater. 2007;81(1):66–75.
  • Wei J, Igarashi T, Okumori N, et al. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater. 2009;4:1–7.
  • Rickard DJ, Gowen M, MacDonald MR. Proliferative responses to estradiol, IL-1 alpha and TGF beta by cells expressing alkaline phosphatase in human osteoblast-like cell cultures. Calcif Tissue Int. 1993;52(3):227–233.
  • Chuenjitkuntaworn B, Inrung W, Damrongsri D, et al. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res A. 2010;94(1):241–251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.