274
Views
1
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of a new sustainable bio-based elastomer nanocomposites containing poly(glycerol sebacate citrate)/chitosan/n-hydroxyapatite for promising tissue engineering applications

, ORCID Icon, , , , , ORCID Icon & show all
Pages 2385-2405 | Received 14 May 2022, Accepted 19 Jul 2022, Published online: 28 Jul 2022

References

  • Cao WLY. Tissue engineering technology for tissue repair and regeneration. Comprehen Biotechnol. 2019;173–201. Compr Biotechnol.
  • Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57(4):490–500.
  • Golbaten-mofrad H, Seyfi A, Seyfikar S, et al. Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly (glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J. 2021;159:110749.
  • Bettinger CJ. Biodegradable elastomers for tissue engineering and cell-biomaterial interactions. Macromol Biosci. 2011;11(4):467–482.
  • Webb AR, Yang J, Ameer GA. Biodegradable polyester elastomers in tissue engineering. Expert Opin Biol Ther. 2004;4(6):801–812.
  • Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules. 2018;19(6):1764–1782.
  • Golbaten-mofrad H, Hadi M, Seyed S, et al. Preparation and properties investigation of biodegradable poly (glycerol sebacate- co -gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomed Mater Res. 2022;1–17.
  • Vogt L, Rivera LR, Liverani L, et al. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Mater Sci Eng C Mater Biol Appl. 2019;103:109712.
  • Vogt L, Ruther F, Salehi S, et al. Poly(glycerol sebacate) in biomedical applications—a review of the recent literature. Adv Healthc Mater. 2021;10(9):20002026. doi:10.1002/ADHM.2020002026.
  • Sha D, Wu Z, Zhang J, et al. Development of modified and multifunctional poly(glycerol sebacate) (PGS)-based biomaterials for biomedical applications. Eur Polym J. 2021;161:110830.
  • Apsite I, Constante G, Dulle M, et al. 4D biofabrication of fibrous artificial nerve graft for neuron regeneration. Biofabrication. 2020;12(3):035027.
  • Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. IJN. 2018;ume 13:5637–5655.
  • Touré ABR, Mele E, Christie JK. Multi-layer scaffolds of poly(caprolactone), poly(glycerol sebacate) and bioactive glasses manufactured by combined 3d printing and electrospinning. Nanomaterials. 2020;10(4):626–616.
  • Zhao X, Wu Y, Du Y, et al. A highly bioactive and biodegradable poly(glycerol sebacate)-silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J Mater Chem B. 2015;3(16):3222–3233.
  • Yu S, Shi J, Liu Y, et al. A mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticle composite membrane for guided bone regeneration. J Mater Chem B. 2019;7(20):3279–3290.
  • Zhou L, He H, Jiang C, et al. Preparation and characterization of poly(glycerol sebacate)/cellulose nanocrystals elastomeric composites. J Appl Polym Sci. 2015;132:42196.
  • Wu Z, Ma X, Ma Y, et al. Core/shell PEGS/HA hybrid nanoparticle via Micelle-coordinated mineralization for tumor-specific therapy. ACS Appl. Mater. Interfaces. 2020;12(10):12109–12119.
  • Nijst CLE, Bruggeman JP, Karp JM, et al. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). 2007;8(10):3067–3073.
  • Risley BB, Ding X, Chen Y, et al. Citrate crosslinked poly(glycerol sebacate) with tunable elastomeric properties. Macromol Biosci. 2020;2:2000301.
  • Ma Y, Zhang C, Wang Y, et al. Direct three-dimensional printing of a highly customized freestanding hyperelastic bioscaffold for complex craniomaxillofacial reconstruction. Chem Eng J. 2021;411:128541.
  • Wang Z, Ma Y, Wang YX, et al. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Acta Biomater. 2018;71:279–292.
  • Seyfikar S, Asgharnejad-laskoukalayeh M, Jafari SH, et al. Introducing a new approach to preparing bionanocomposite sponges based on poly(glycerol sebacate urethane) (PGSU) with great interconnectivity and high hydrophilicity properties for application in tissue engineering. Eur Polym J. 2022;173:111239.
  • Wu Y, Shi R, Chen D, et al. Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improved mechanical properties, adjustable degradability, and better biocompatibility. J Appl Polym Sci. 2012;123(3):1612–1620.
  • Mathew, L. Development of elastomic hybrid composite based synthesised nanosilica short nylon fiber [PhD dissertation]. Cochin University of Science and Technology; 2009.
  • Hrabárová E, Valachová K, Rychlý J, et al. High-molar-mass hyaluronan degradation by weissberger’s system: pro- and anti-oxidative effects of some thiol compounds. Polym Degrad Stab. 2009;94:1427–1435.
  • Qi C, Musetti S, Fu LH, et al. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev. 2019;48(10):2698–2737.
  • Wang Y, Wang J, Xiao G, et al. Investigation of various fatty acid surfactants on the microstructure of flexible hydroxyapatite nanofibers. CrystEngComm. 2021;23(40):7049–7055.
  • Khairnar RS, Narwade VN, Kokol V. Nanostructured bioceramics and applications. Fundam biomater ceram. Sawston: Elsevier Inc.; 2018. p. 251–263.
  • Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev. 2008;108(11):4628–4669.
  • Mateus AYP, Barrias CC, Ribeiro C, et al. Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A. 2008;86(2):483–493.
  • Shalumon KT, Sowmya S, Sathish D, et al. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. J Biomed Nanotechnol. 2013;9(3):430–440.
  • Shishatskaya EI, Khlusov IA, Volova TG. A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. J Biomater Sci Polym Ed. 2006;17(5):481–498.
  • Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–286.
  • Domard A, Chitosan DM. Structure–properties relationship and biomedical applications alain domard and monique domard. Polym biomater revis expand. Boca Raton (FL): CRC Press; 2021. p. 201–226.
  • Islam S, Bhuiyan MAR, Islam MN. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ. 2017;25(3):854–866.
  • Ahsan SM, Thomas M, Reddy KK, et al. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol. 2018;110:97–109.
  • Xu J, Zhang J, Gao W, et al. Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater. Lett. 2009;63(8):658–660.
  • Li XY, Kong XY, Shi S, et al. Biodegradable MPEG-g-Chitosan and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) composite films: Part 1. Preparation and characterization. Carbohydr Polym. 2010;79(2):429–436.
  • Salehi MH, Golbaten-Mofrad H, Jafari SH, et al. Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. Int J Biol Macromol. 2021;173:467–480. InternetAvailable from:
  • Salehpour S, Dubé MA. Reaction monitoring of glycerol Step-Growth polymerization using ATR-FTIR spectroscopy. Macromol React Eng. 2012;6(2-3):85–92.
  • Fakhri V, Jafari A, Shafiei MA, et al. Development of physical, mechanical, antibacterial and cell growth properties of poly(glycerol sebacate urethane) (PGSU) with helping of curcumin and hydroxyapatite nanoparticles. Polym. Chem. 2021;12(43):6263–6282.
  • Pimpang P, Sumang R, Choopun S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Chiang Mai J Sci. 2018;45:2005–2014.
  • Thomas LV, Arun U, Remya S, et al. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. J Mater Sci Mater Med. 2009;20:S259–S269.
  • Anicuta S, Dobre L, Stroescu M, et al. Fourier transform infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan. Analele univ din oradea fasc ecotoxicologie. Zooteh si Tehnol Ind Aliment. 2010;65:1234–1240.
  • Bil M, Mrówka P, Kołbuk D, et al. Multifunctional composite combining chitosan microspheres for drug delivery embedded in shape memory polyester-urethane matrix. Compos Sci Technol. 2021;201:108481.
  • Lei L, Li L, Zhang L, et al. Structure and performance of nano-hydroxyapatite filled biodegradable poly((1,2-propanediol-sebacate)-citrate) elastomers. Polym Degrad Stab. 2009;94(9):1494–1502.
  • Mir M, Leite FL, Herrmann PSDP, et al. XRD, AFM, IR and TGA study of nanostructured hydroxyapatite. Mat. Res. 2012;15(4):622–627.
  • Poinern GE, Brundavanam RK, Mondinos N, et al. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason Sonochem. 2009;16(4):469–474.
  • Khalid M, Mujahid M, Amin S, et al. Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int. 2013;39(1):39–50.
  • Panda RN, Hsieh MF, Chung RJ, et al. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids. 2003;64(2):193–199.
  • Rusu VM, Ng CH, Wilke M, et al. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials. 2005;26(26):5414–5426.
  • Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym. 2011;83(2):438–446.
  • Rosenbalm TN, Teruel M, Day CS, et al. Structural and mechanical characterization of bioresorbable, elastomeric nanocomposites from poly(glycerol sebacate)/nanohydroxyapatite for tissue transport applications. J Biomed Mater Res B Appl Biomater. 2016;104(7):1366–1373.
  • Correlo VM, Boesel LF, Bhattacharya M, et al. Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol. Mater. Eng. 2005;290(12):1157–1165.
  • Mir S, Yasin T, Halley PJ, et al. Thermal, rheological, mechanical and morphological behavior of HDPE/chitosan blend. Carbohydr Polym. 2011;83(2):414–421.
  • Wang Y, Sun N, Zhang Y, et al. Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold. Sci Rep. 2019;9(1):7960.
  • Huang B, Caetano G, Vyas C, et al. Polymer-ceramic composite scaffolds: the effect of hydroxyapatite and β-tri-calcium phosphate. Materials (Basel). 2018;11(1):129.
  • Khalili P, Liu X, Zhao Z, et al. Fully biodegradable composites: thermal, flammability, moisture absorption and mechanical properties of natural fibre-reinforced composites with nano-hydroxyapatite. Materials (Basel). 2019;12(7):1145–1113.
  • Rohman G, Ramtani S, Changotade S, et al. Characterization of elastomeric scaffolds developed for tissue engineering applications by compression and nanoindentation tests, µ -Raman and µ-Brillouin spectroscopies. To cite this version: HAL Id: hal-02095947 Characterization of elastomeric scaffo, 2020.
  • Jafari A, Fakhri V, Kamrani S, et al. Development of flexible nanocomposites based on poly (ε-caprolactone) for tissue engineering application: the contributing role of poly (glycerol succinic acid) and polypyrrole. Eur Polym J. 2022;164:110984.
  • Rostamian M, Kalaee MR, Dehkordi SR, et al. Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polym J. 2020;138:109985.
  • Li L, Ding S, Zhou C. Preparation and degradation of PLA/chitosan composite materials. J. Appl. Polym. Sci. 2004;91(1):274–277.
  • Shen Y-Q, Zhu Y-J, Yu H-P, et al. Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. J Colloid Interface Sci. 2018;530:9–15. J. Colloid Interface Sci. 2018.
  • Torres E, Dominguez-Candela I, Castello-Palacios S, et al. Development and characterization of polyester and acrylate-based composites with hydroxyapatite and halloysite nanotubes for medical applications. Polymers (Basel). 2020;12(8):1703.
  • Patel A, Gaharwar AK, Iviglia G, et al. Biomaterials highly elastomeric poly (glycerol sebacate)-co-poly (ethylene glycol) amphiphilic block copolymers. Biomaterials. 2013;34(16):3970–3983.
  • Kerativitayanan P, Gaharwar AK. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. ACTA Biomater. 2015;26:34–44.
  • Mokhtari 1 |N, Zargar Kharazi A. Blood compatibility and cell response improvement of poly glycerol sebacate/poly lactic acid scaffold for vascular graft applications. J. Biomed. Mater. Res. 2020;109(12):2673–2684.
  • Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749–4757.
  • Jiang T, Deng M, Abdel-Fattah WI, et al. Chitosan-Based biopharmaceutical scaffolds in tissue engineering and regenerative medicine. Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. Hobokon (NJ):John Wiley and Sons; 2012. p. 393–427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.