1,093
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy

, , , & ORCID Icon
Pages 398-418 | Received 07 Jul 2022, Accepted 29 Aug 2022, Published online: 09 Sep 2022

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789. https://doi.org/10.1002/IJC.33588.
  • Rehman U, Parveen N, Sheikh A, et al. Polymeric nanoparticles-siRNA as an emerging nano-polyplexes against ovarian cancer. Colloids Surf B Biointerfaces. 2022;218:112766. https://doi.org/10.1016/J.COLSURFB.2022.112766.
  • Mukherjee S, Mukherjee S, Abourehab MAS, et al. Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J. 2022;177:111471. https://doi.org/10.1016/J.EURPOLYMJ.2022.111471.
  • Singh V, Sheikh A, Abourehab MAS, et al. Dostarlimab as a miracle drug: rising hope against cancer treatment. Biosensors (Basel). 2022;12(8):617. https://doi.org/10.3390/BIOS12080617.
  • Jain AK, Jain S, Abourehab MAS, et al. An insight on topically applied formulations for management of various skin disorders. J Biomater Sci Polym Ed. 2022;1–27. https://doi.org/10.1080/09205063.2022.2103625.
  • Gupta P, Sheikh A, Abourehab MAS, et al. Amelioration of full-thickness wound using hesperidin loaded dendrimer-based hydrogel bandages. Biosens. 2022;12(7):462. https://doi.org/10.3390/BIOS12070462.
  • Hussain Z, Rahim MA, Jan N, et al. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release. 2021;335:130–157. https://doi.org/10.1016/J.JCONREL.2021.05.018.
  • Qiao J, Liu Z, Fu YX. Adapting conventional cancer treatment for immunotherapy. J Mol Med (Berl). 2016;94(5):489–495. https://doi.org/10.1007/S00109-016-1393-4.
  • Correa DD, Ahles TA. Cognitive adverse effects of chemotherapy in breast cancer patients. Curr Opin Support Palliat Care. 2007;1(1):57–62. https://doi.org/10.1097/SPC.0B013E32813A328F.
  • Nurgali K, Jagoe RT, Abalo R. Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245. https://doi.org/10.3389/FPHAR.2018.00245.
  • Nounou MI, Elamrawy F, Ahmed N, et al. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer (Auckl). 2015;9(Suppl 2):17–34. https://doi.org/10.4137/BCBCR.S29420.
  • Mirza Z, Karim S. Advancements in CRISPR/Cas9 technology-focusing on cancer therapeutics and beyond. Semin Cell Dev Biol. 2019;96:13–21. https://doi.org/10.1016/J.SEMCDB.2019.05.026.
  • Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54(2):234–244. https://doi.org/10.1016/J.MOLCEL.2014.03.011.
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–1278. https://doi.org/10.1016/J.CELL.2014.05.010.
  • Long C, Amoasii L, Bassel-Duby R, et al. Genome editing of monogenic neuromuscular diseases: a systematic review. JAMA Neurol. 2016;73(11):1349–1355. https://doi.org/10.1001/JAMANEUROL.2016.3388.
  • Xu X, Liu C, Wang Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891. https://doi.org/10.1016/J.ADDR.2021.113891.
  • Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):355–370. https://doi.org/10.1016/J.MOLCEL.2016.07.004.
  • Klann TS, Black JB, Chellappan M, et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol. 2017;35(6):561–568. https://doi.org/10.1038/NBT.3853.
  • Deschler B, Lübbert M. Acute myeloid leukemia: Epidemiology and etiology. Acute Leuk. 2008;47–56. https://doi.org/10.1007/978-3-540-72304-2_3.
  • Shallis RM, Wang R, Davidoff A, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87. https://doi.org/10.1016/J.BLRE.2019.04.005.
  • Yan J, Kang DD, Turnbull G, et al. Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Adv Drug Deliv Rev. 2022;180:114042. https://doi.org/10.1016/J.ADDR.2021.114042.
  • Pandol S, Edderkaoui M, Gukovsky I, et al. Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2009;7(11 Suppl):S44–S47. https://doi.org/10.1016/J.CGH.2009.07.039.
  • Ying H, Dey P, Yao W, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2016;30(4):355–385. https://doi.org/10.1101/GAD.275776.115.
  • Hezel AF, Kimmelman AC, Stanger BZ, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218–1249. https://doi.org/10.1101/GAD.1415606.
  • Watanabe S, Shimada S, Akiyama Y, et al. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. Int J Cancer. 2019;145(1):192–205. https://doi.org/10.1002/IJC.32072.
  • Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 may induce pancreatic cancer progression as a key player of extracellular vesicles effects as evidenced in the in vitro MIA PaCa-2 model system. Int J Mol Sci. 2018;19(12):3878. https://doi.org/10.3390/IJMS19123878.
  • Stintzing S. Management of colorectal cancer. F1000Prime Rep. 2014;6:108. https://doi.org/10.12703/P6-108.
  • Vu M, Yu J, Awolude OA, et al. Cervical cancer worldwide. Curr Probl Cancer. 2018;42(5):457–465. https://doi.org/10.1016/J.CURRPROBLCANCER.2018.06.003.
  • Hull R, Mbele M, Makhafola T, et al. Cervical cancer in low and middle-income countries (Review). Oncol Lett. 2020;20(3):2058–2074. https://doi.org/10.3892/OL.2020.11754/HTML.
  • Jubair L, Lam AK, Fallaha S, et al. CRISPR/Cas9-loaded stealth liposomes effectively cleared established HPV16-driven tumours in syngeneic mice. PLoS One. 2021;16(1):e0223288. https://doi.org/10.1371/JOURNAL.PONE.0223288.
  • Ling K, Yang L, Yang N, et al. Gene targeting of HPV18 E6 and E7 synchronously by nonviral transfection of CRISPR/Cas9 system in cervical cancer. Hum Gene Ther. 2020;31(5–6):297–308. https://doi.org/10.1089/HUM.2019.246/ASSET/IMAGES/LARGE/HUM.2019.246_FIGURE8.JPEG.
  • Awasthi R, Roseblade A, Hansbro PM, et al. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696–1709. https://doi.org/10.2174/1389450119666180326122831.
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–99. https://doi.org/10.1016/J.PHRS.2010.03.005.
  • Song R, Murphy M, Li C, et al. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–3145. https://doi.org/10.2147/DDDT.S165440.
  • Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J Control Release. 2022;346:328–354. https://doi.org/10.1016/J.JCONREL.2022.04.008.
  • Kumar Dubey S, Dabholkar N, Narayan Pal U, et al. Emerging innovations in cold plasma therapy against cancer: a paradigm shift. Drug Discov. Today. 2022;27(9):2425–2439. https://doi.org/10.1016/J.DRUDIS.2022.05.014.
  • Singh A, Ujjwal RR, Naqvi S, et al. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease. J Drug Target. 2022;1–17. https://doi.org/10.1080/1061186X.2022.2063297.
  • Mahmoudi A, Kesharwani P, Majeed M, et al. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surfaces B Biointerfaces. 2022;215:112481. https://doi.org/10.1016/J.COLSURFB.2022.112481.
  • Fatima M, Sheikh A, Hasan N, et al. Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J. 2022;170:111156. https://doi.org/10.1016/J.EURPOLYMJ.2022.111156.
  • Farhoudi L, Kesharwani P, Majeed M, et al. Polymeric nanomicelles of curcumin: potential applications in cancer. Int J Pharm. 2022;617:121622. https://doi.org/10.1016/J.IJPHARM.2022.121622.
  • Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 2022;146:112530. https://doi.org/10.1016/J.BIOPHA.2021.112530.
  • Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release. 2021;340:221–242. https://doi.org/10.1016/J.JCONREL.2021.10.028.
  • Chadar R, Afzal O, Alqahtani SM, et al. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Surf B Biointerfaces. 2021;208:112044. https://doi.org/10.1016/J.COLSURFB.2021.112044.
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–358. https://doi.org/10.4103/0250-474X.57282.
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5(3):305–313. https://doi.org/10.15171/APB.2015.043.
  • Singh V, Md S, Alhakamy NA, et al. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur Polym J. 2022;162:110883. https://doi.org/10.1016/J.EURPOLYMJ.2021.110883.
  • Madamsetty VS, Tavakol S, Moghassemi S, et al. Chitosan: a versatile bio-platform for breast cancer theranostics. J Control Release. 2022;341:733–752. https://doi.org/10.1016/J.JCONREL.2021.12.012.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307. https://doi.org/10.1016/j.progpolymsci.2013.07.005.
  • Amjad MW, Kesharwani P, Mohd Amin MCI, et al. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog Polym Sci. 2017;64:154–181. https://doi.org/10.1016/j.progpolymsci.2016.09.008.
  • Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–7150. https://doi.org/10.1016/j.biomaterials.2012.06.068.
  • Kesharwani P, Banerjee S, Gupta U, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today. 2015;18(10):565–572. https://doi.org/10.1016/j.mattod.2015.06.003.
  • Kesharwani P, Choudhury H, Meher JG, et al. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Mater Sci. 2019;103:484–508. https://doi.org/10.1016/j.pmatsci.2019.03.003.
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288–303. https://doi.org/10.4103/1735-5362.235156.
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508. https://doi.org/10.1517/17425247.2012.673278.
  • Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154-155:64–78. https://doi.org/10.1016/J.ADDR.2020.07.022.
  • Khan S, Baboota S, Ali J, et al. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015;5(4):182–191. https://doi.org/10.4103/2230-973X.167661.
  • Yanar F, Mosayyebi A, Nastruzzi C, et al. Continuous-flow production of liposomes with a millireactor under varying fluidic conditions. Pharmaceutics. 2020;12(11):1001–1021. https://doi.org/10.3390/PHARMACEUTICS12111001.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. https://doi.org/10.3389/fphar.2015.00286.
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36. https://doi.org/10.1016/j.jconrel.2014.04.015.
  • Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100. https://doi.org/10.3109/10717544.2013.838077.
  • Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond). 2010;5(4):523–528. https://doi.org/10.2217/NNM.10.23.
  • Dalby B, Cates S, Harris A, et al. Advanced transfection with lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004;33(2):95–103. https://doi.org/10.1016/J.YMETH.2003.11.023.
  • Breunig M, Lungwitz U, Liebl R, et al. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci U S A. 2007;104(36):14454–14459. https://doi.org/10.1073/PNAS.0703882104.
  • Nunes SS, Miranda SEM, de Oliveira Silva J, et al. pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomed Pharmacother. 2021;144:112317. https://doi.org/10.1016/J.BIOPHA.2021.112317.
  • Sharma S, Xing F, Liu Y, et al. Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. J Biol Chem. 2016;291(37):19351–19363. https://doi.org/10.1074/JBC.M116.737379.
  • Givens BE, Naguib YW, Geary SM, et al. Nanoparticle based delivery of CRISPR/Cas9 genome editing therapeutics. AAPS J. 2018;20(6):108. https://doi.org/10.1208/S12248-018-0267-9.
  • Ashok B, Peppas NA, Wechsler ME. Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. J Drug Deliv Sci Technol. 2021;65:102728. https://doi.org/10.1016/J.JDDST.2021.102728.
  • Wang SW, Gao C, Zheng YM, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 2022;21(1):57. https://doi.org/10.1186/S12943-022-01518-8.
  • Glass Z, Lee M, Li Y, et al. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018;36(2):173–185. https://doi.org/10.1016/J.TIBTECH.2017.11.006.
  • Kazemian P, Yu SY, Thomson SB, et al. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharmaceutics. 2022;19(6):1669–1686. https://doi.org/10.1021/ACS.MOLPHARMACEUT.1C00916/ASSET/IMAGES/MEDIUM/MP1C00916_0003.GIF.
  • Li C, Yang T, Weng Y, et al. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. Bioact Mater. 2022;9:590–601. https://doi.org/10.1016/J.BIOACTMAT.2021.05.051.
  • Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–218. https://doi.org/10.1016/J.BIOMATERIALS.2018.04.031.
  • Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. 2016;113(11):2868–2873. https://doi.org/10.1073/PNAS.1520244113/-/DCSUPPLEMENTAL.
  • Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res. 2019;52(6):1555–1564. https://doi.org/10.1021/ACS.ACCOUNTS.9B00106.
  • Miller JB, Zhang S, Kos P, et al. Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed. 2017;56(4):1059–1063. https://doi.org/10.1002/ANIE.201610209.
  • Naeem M, Hoque MZ, Ovais M, et al. Stimulus-Responsive smart nanoparticles-based CRISPR-Cas delivery for therapeutic genome editing. Int J Mol Sci. 2021;22(20):11300. https://doi.org/10.3390/IJMS222011300.
  • Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328–333. https://doi.org/10.1038/NBT.3471.
  • Cai W, Luo T, Mao L, et al. Spatiotemporal delivery of CRISPR/Cas9 genome editing machinery using stimuli-responsive vehicles. Angew Chem Int Ed Engl. 2021;60(16):8596–8606. https://doi.org/10.1002/ANIE.202005644.
  • Chang J, Chen X, Glass Z, et al. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc Chem Res. 2019;52(3):665–675. https://doi.org/10.1021/ACS.ACCOUNTS.8B00493/ASSET/IMAGES/MEDIUM/AR-2018-004939_0012.GIF.
  • Zhang X, Li B, Luo X, et al. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9(30):25481–25487. https://doi.org/10.1021/ACSAMI.7B08163.
  • Cho EY, Ryu JY, Lee HAR, et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nanobiotechnol. 2019;17(1):19–12. https://doi.org/10.1186/S12951-019-0452-8/FIGURES/5.
  • Zhang Y, Li Z, Milon Essola J, et al. Biosafety materials: ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. Biosaf Health. 2022;4(2):70–78. https://doi.org/10.1016/J.BSHEAL.2022.03.010.
  • Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat Mater. 2021;20(5):701–710. https://doi.org/10.1038/s41563-020-00886-0.
  • Wirsching HG, Weller M. Glioblastoma. In: Moliterno Gunel J, Piepmeier J, Baehring J, editors. Malignant brain tumors state-of-the-art treat. Cham, Switzerland: Springer; 2017. p. 265–288. https://doi.org/10.1007/978-3-319-49864-5_18.
  • Rosenblum D, Gutkin A, Kedmi R, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv. 2020;6(47):9450–9468. https://doi.org/10.1126/SCIADV.ABC9450/SUPPL_FILE/ABC9450_SM.PDF.
  • Wang CS, Chang CH, Tzeng TY, et al. Gene-editing by CRISPR–Cas9 in combination with anthracycline therapy via tumor microenvironment-switchable, EGFR-targeted, and nucleus-directed nanoparticles for head and neck cancer suppression. Nanoscale Horiz. 2021;6(9):729–743. https://doi.org/10.1039/D1NH00254F.
  • Fan J, Liu Y, Liu L, et al. A multifunction lipid-based CRISPR-Cas13a genetic circuit delivery system for bladder cancer gene therapy. ACS Synth Biol. 2020;9(2):343–355. https://doi.org/10.1021/ACSSYNBIO.9B00349/SUPPL_FILE/SB9B00349_SI_001.PDF.
  • Jayson GC, Kohn EC, Kitchener HC, et al. Ovarian cancer. Lancet (London, England). 2014;384(9951):1376–1388. https://doi.org/10.1016/S0140-6736(13)62146-7.
  • Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol. 2009;4:287–313. https://doi.org/10.1146/ANNUREV.PATHOL.4.110807.092246.
  • Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021; 6(12):1078–1094. https://doi.org/10.1038/s41578-021-00358-0.
  • Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–644. https://doi.org/10.1016/J.CCM.2011.09.001.
  • Siegel R, Ward E, Brawley O, et al. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths, CA. CA Cancer J Clin. 2011;61(4):212–236. https://doi.org/10.3322/CAAC.20121.
  • Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Prim. 2015; 1(2015):1–18. https://doi.org/10.1038/nrdp.2015.17.
  • Chen R, Smith-Cohn M, Cohen AL, et al. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14(2):284–297. https://doi.org/10.1007/S13311-017-0519-X/TABLES/2.
  • Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005; 109(1):93–108. https://doi.org/10.1007/S00401-005-0991-Y.
  • Chai RC, Lambie D, Verma M, et al. Current trends in the etiology and diagnosis of HPV-related head and neck cancers. Cancer Med. 2015;4(4):596–607. https://doi.org/10.1002/CAM4.424.
  • Kwan ML, Garren B, Nielsen ME, et al. Lifestyle and nutritional modifiable factors in the prevention and treatment of bladder cancer. Urol Oncol. 2019;37(6):380–386. https://doi.org/10.1016/J.UROLONC.2018.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.