255
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Controlled release of vascular endothelial growth factor (VEGF) in alginate and hyaluronic acid (ALG–HA) bead system to promote wound healing in punch-induced wound rat model

, , ORCID Icon &
Pages 612-631 | Received 10 Jun 2022, Accepted 10 Oct 2022, Published online: 18 Oct 2022

References

  • Kang BS, Na YC, Jin YW. Comparison of the wound healing effect of cellulose and gelatin: an in vivo study. Arch Plast Surg. 2012;39(4):317–321.
  • Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:E23.
  • Mohiti Asli M, Saha S, Murphy S, et al. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B Appl Biomater. 2017;105(2):327–339.
  • Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(Pt 18):3209–3213.
  • Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514–525.
  • Kumar V. Robbins & cotran-patologia bases patológicas das doenças. 8th ed. Brasil: Elsevier; 2010.
  • Gethin G, Probst S, Stryja J, et al. Evidence for person-centred care in chronic wound care: a systematic review and recommendations for practice. J Wound Care. 2020;29(Sup9b):S1–S22.
  • Edwards JV, Yager DR, Cohen IK, et al. Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution. Wound Repair Regen. 2001;9(1):50–58.
  • Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–233.
  • Razzak M, Dewi S, Lely H, et al. The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Radiat Phys Chem. 1999;55(2):153–165.
  • Li Y, Jiang H, Zheng W, et al. Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B. 2015;3(17):3498–3507.
  • Zahedi P, Rezaeian I, Ranaei Siadat SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21(2):77–95.
  • Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review. Rev Endocr Metab Disord. 2019;20(2):207–217.
  • Hinnis AR. The tumour suppressor p53 and apoptotic regulatory proteins in breast cancer survival and response to therapy. Leicester, UK: University of Leicester; 2005.
  • Ehrenreich M, Ruszczak Z. Tissue-engineered temporary wound coverings. Important options for the clinician. Acta Dermatovenerol Alp Panon Adriat. 2006;15(1):5.
  • Smith D, McHugh T, Phillips LG, et al. Biosynthetic compound dressings—management of hand burns. Burns Incl Therm Inj. 1988;14(5):405–408.
  • Williams DF. Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol. 2019;7:127.
  • Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res. 2021;25(1):5–21.
  • Wang P, Song Y, Weir MD, et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Dent Mater. 2016;32(2):252–263.
  • Amirian J, Van TTT, Bae S-H, et al. Examination of in vitro and in vivo biocompatibility of alginate-hyaluronic acid microbeads as a promising method in cell delivery for kidney regeneration. Int J Biol Macromol. 2017;105(Pt 1):143–153.
  • Taz M, Makkar P, Imran KM, et al. Bone regeneration of multichannel biphasic calcium phosphate granules supplemented with hyaluronic acid. Mater Sci Eng C Mater Biol Appl. 2019;99:1058–1066.
  • Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–985.
  • Senger DR, Connolly DT, Van De Water L, et al. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 1990;50(6):1774–1778.
  • Brkovic A, Sirois MG. Vascular permeability induced by VEGF family members in vivo: role of endogenous PAF and NO synthesis. J Cell Biochem. 2007;100(3):727–737.
  • Yamagishi S, Yonekura H, Yamamoto Y, et al. Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest. 1999;79(4):501–509.
  • Yoshida A, Anand-Apte B, Zetter BR. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors. 1996;13(1-2):57–64.
  • Noiri E, Lee E, Testa J, et al. Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol. 1998;274(1):C236–44C244.
  • Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266(18):11947–11954.
  • Houck KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991;5(12):1806–1814.
  • Houck KA, Leung D, Rowland A, et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992;267(36):26031–26037.
  • Poltorak Z, Cohen T, Sivan R, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem. 1997;272(11):7151–7158.
  • Stojadinovic O. A novel non-angiogenic mechanism of VEGF: Stimulation of keratinocyte and fibroblast migration. Wound Repair Regen. 2007;15:A30.
  • Lindenhayn K, Perka C, Spitzer RS, et al. Retention of hyaluronic acid in alginate beads: aspects for in vitro cartilage engineering. J Biomed Mater Res. 1999;44(2):149–155.
  • Rajaram A, Schreyer DJ, Chen DX. Use of the polycation polyethyleneimine to improve the physical properties of alginate–hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. J Biomater Sci Polym Ed. 2015;26(7):433–445.
  • Amirian J, Makkar P, Lee GH, et al. Incorporation of alginate-hyaluronic acid microbeads in injectable calcium phosphate cement for improved bone regeneration. Mater Lett. 2020;272:127830.
  • Tanaka H, Matsumura M, Veliky IA. Diffusion characteristics of substrates in Ca‐alginate gel beads. Biotechnol Bioeng. 1984;26(1):53–58.
  • Won K, Kim S, Kim K-J, et al. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem. 2005;40(6):2149–2154.
  • Hu Y, Zheng M, Dong X, et al. Preparation and characterization of alginate-hyaluronic acid-chitosan based composite gel beads. J Wuhan Univ Technol Mater Sci Ed. 2015;30(6):1297–1303.
  • Moya ML, Cheng M-H, Huang J-J, et al. The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials. 2010;31(10):2816–2826.
  • Corstens MN, Berton-Carabin CC, Elichiry-Ortiz PT, et al. Emulsion-alginate beads designed to control in vitro intestinal lipolysis: towards appetite control. J Funct Foods. 2017;34:319–328.
  • Salehi M, Ehterami A, Farzamfar S, et al. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Deliv Transl Res. 2021;11(1):142–153.
  • Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz AG, et al. Analysis of the degradation process of alginate-based hydrogels in artificial urine for use as a bioresorbable material in the treatment of urethral injuries. Processes. 2020;8(3):304.
  • Singh A, Kar AK, Singh D, et al. pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of imidacloprid towards sustainable pest control. Chem Eng J. 2022;427:131215.
  • Dave V, Yadav RB, Kushwaha K, et al. Lipid-polymer hybrid nanoparticles: development & statistical optimization of norfloxacin for topical drug delivery system. Bioact Mater. 2017;2(4):269–280.
  • Aprilliza M. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conf Ser Mater Sci Eng. 2017;188(1):012019.
  • Liu Q, Li Q, Xu S, et al. Preparation and properties of 3D printed alginate–chitosan polyion complex hydrogels for tissue engineering. Polymers. 2018;10(6):664.
  • He S, Shi D, Han Z, et al. Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. BioMed Eng OnLine. 2019;18(1):1–12.
  • Peng Y, He D, Ge X, et al. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact Mater. 2021;6(10):3109–3124.
  • Chen L, He Z, Chen B, et al. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci Mater Med. 2010;21(1):309–317. [Mismatch
  • Pike DB, Cai S, Pomraning KR, et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials. 2006;27(30):5242–5251.
  • MacLauchlan S, Yu J, Parrish M, et al. Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2. Proc Natl Acad Sci USA. 2011;108(46):E1137–45E1145.
  • Zeng Z, Huang WD, Gao Q, et al. Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway. Int J Mol Med. 2015;36(3):685–697.
  • Cavender DE. Lymphocyte adhesion to endothelial cells in vitro: models for the study of normal lymphocyte recirculation and lymphocyte emigration into chronic inflammatory lesions. J Invest Dermatol. 1989;93(2):S88–S95.
  • Shimizu Y, Newman W, Tanaka Y, et al. Lymphocyte interactions with endothelial cells. Immunol Today. 1992;13(3):106–112.
  • Kang H-J, Park S-S, Saleh T, et al. In vitro and in vivo evaluation of Ca/P-hyaluronic acid/gelatin based novel dental plugs for one-step socket preservation. Mater Des. 2020;194:108891.
  • Dumont M, Villet R, Guirand M, et al. Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr Polym. 2018;190:31–42.
  • Benavides S, Villalobos-Carvajal R, Reyes J. Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J Food Eng. 2012;110(2):232–239.
  • Elçin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs. 2001;25(7):558–565.
  • Tellechea A, Silva EA, Min J, et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int J Low Extrem Wounds. 2015;14(2):146–153.
  • Peters MC, Isenberg BC, Rowley JA, et al. Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed. 1998;9(12):1267–1278.
  • Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care. 2014;3(10):647–661.
  • Nogami M, Hoshi T, Kinoshita M, et al. Vascular endothelial growth factor expression in rat skin incision wound. Med Mol Morphol. 2007;40(2):82–87.
  • Han Y-F, Han Y-Q, Pan Y-G, et al. Transplantation of microencapsulated cells expressing VEGF improves angiogenesis in implanted xenogeneic acellular dermis on wound. Transplantation Proceedings. 2010;42(5):1935–1943.
  • Chen Z, Zhao L, Zhao F, et al. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol Lett. 2018;15(5):7433–7437.
  • Yang X, Luo LX, Guo M, et al. Tubeimoside I promotes angiogenesis via activation of eNOS-VEGF signaling pathway. J Ethnopharmacol. 2021;267:113642.
  • Ratanavaraporn J, Chuma N, Kanokpanont S, et al. Beads fabricated from alginate, hyaluronic acid, and gelatin using ionic crosslinking and layer‐by‐layer coating techniques for controlled release of gentamicin. J Appl Polym Sci. 2019;136(1):46893.
  • Chou K-C, Chen C-T, Cherng J-H, et al. Cutaneous regeneration mechanism of β-Sheet silk fibroin in a rat burn wound healing model. Polymers. 2021;13(20):3537.
  • Larjava H, Koivisto L, Häkkinen L. Keratinocyte interactions with fibronectin during wound healing. Madame Curie Bioscience Database. [Internet]. Landes Bioscience; 2013.
  • Li W, Fan J, Chen M, et al. Mechanism of human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB. Mol Biol Cell. 2004;15(1):294–309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.