256
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A glutathione-sensitive drug delivery system based on carboxymethyl chitosan co-deliver Rose Bengal and oxymatrine for combined cancer treatment

, , , , , , , & show all
Pages 650-673 | Received 16 Jul 2022, Accepted 21 Oct 2022, Published online: 01 Nov 2022

References

  • Gupta B, Johnson NW, Kumar N. Global epidemiology of head and neck cancers: a continuing challenge. Oncology. 2016;91(1):13–23.
  • Warnakulasuriya S, Kerr AR. Oral cancer screening: past, present, and future. J Dent Res. 2021;100(12):1313–1320.
  • de Oliveira TB, Marta GN, de Castro Junior G, et al. Induction chemotherapy for advanced oral cavity cancer. Curr Oncol Rep. 2021;23(11)1–7.
  • Jeswani G, Das Paul S, Jha AK. Advances in the delivery of cancer therapeutics: a comprehensive review. Curr Drug Deliv. 2018;15(1):21–36.
  • Zhao W, Liu J, Li Y, et al. Immune effect of active components of traditional Chinese medicine on triple-negative breast cancer. Front Pharmacol. 2021;12:731741.
  • Zhang W, Liu C, Li J, et al. Tanshinone IIA: new perspective on the anti-Tumor mechanism of a traditional natural medicine. Am J Chin Med. 2022;50(1):209–239.
  • Xia Q, Mao W. Anti-tumor effects of traditional Chinese medicine give a promising perspective. J Can Res Ther. 2014;10(5):1–2.
  • Li S, Sun Y, Huang J, et al. Anti-tumor effects and mechanisms of astragalus membranaceus (AM) and its specific immunopotentiation: status and prospect. J Ethnopharmacol. 2020;258:112797–112131.
  • Zhang Y, Cui Y, Zhu J, et al. The anti-tumor effect and biological activities of the extract jmm6 from the stem-barks of the Chinese Juglans mandshurica maxim on human hepatoma cell line bel-7402. Afr J Tradit Complem Altern Med. 2013;10(2):258–269.
  • Tang S-M, Deng X-T, Zhou J, et al. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604.
  • Zhang L-J, Chen L, Lu Y, et al. Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur J Pharmacol. 2010;643(2–3):195–201.
  • Liu Y, Xu Y, Ji W, et al. Anti-tumor activities of matrine and oxymatrine: literature review. Tumour Biol. 2014;35(6):5111–5119.
  • Yu Q, Luo J, Zhang J, et al. Oxymatrine inhibits the development of non-small cell lung cancer through miR-367-3p upregulation and target gene SGK3 downregulation. Am J Transl Res. 2020;12(9):5538–5550.
  • Wang Y, Yang S, Zhang S, et al. Oxymatrine inhibits proliferation and migration of vulvar squamous cell carcinoma cells via attenuation of the RAS/RAF/MEK/ERK pathway. Cancer Manag Res. 2020;12:2057–2067.
  • Huang YX, Zhang J, Wang G, et al. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21 R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol. 2018;32:2058738418781634.
  • Wei J, Zhu Y, Xu G, et al. Oxymatrine extracted from sophora flavescens inhibited cell growth and induced apoptosis in human osteosarcoma MG-63 cells in vitro. Cell Biochem Biophys. 2014;70(2):1439–1444.
  • Li F, Hu Y, Zhou C, et al. Pharmacokinetics of oxymatrine in rat after intravenous administration by ultra-performance liquid chromatography-tandem mass spectrometry. Latin Am J Pharm. 2020;39(2):219–223.
  • Liu M, Jin S, Yan H, et al. Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine. Eur J Pharm Sci. 2017;104:212–220.
  • Mimikos C, Shafirstein G, Arshad H. Current state and future of photodynamic therapy for the treatment of head and neck squamous cell carcinoma. World J Otorhinolaryngol Head Neck Surg. 2016;2(2):126–129.
  • Yan Z, Qin C, Zhao C, et al. Research progress of nanomaterial-mediated photodynamic therapy in tumor treatment. J Nanopart Res. 2020;22(9):1–9.
  • Liu Y, Yang Z, Gong C, et al. Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci. 2014;105(5):520–527.
  • Atenco-Cuautle JC, Delgado-Lopez MG, Ramos-Garcia R, et al. 17th World Congress of the International-Photodynamic-Association (IPA); 2019 Jun 28–Jul 4, Cambridge, MA; 2019.
  • Nakonechny F, Barel M, David A, et al. Dark antibacterial activity of Rose Bengal. Int J Mol Sci. 2019;20(13):3196.
  • Demartis S, Obinu A, Gavini E, et al. Nanotechnology-based Rose Bengal: a broad-spectrum biomedical tool. Dyes Pigments. 2021;188:109236.
  • Logan K, Foglietta F, Nesbitt H, et al. Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel, doxorubicin and Rose Bengal. Eur J Pharm Biopharm. 2019;139:224–231.
  • Sun J, Zhang L, Zhang Y, et al. Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy. J Microencapsul. 2019;36(8):728–737.
  • Tang L, Li J, Zhao Q, et al. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021;13(8):1151.
  • Maghsoudnia N, Eftekhari RB, Sohi AN, et al. Application of nano-based systems for drug delivery and targeting: a review. J Nanopart Res. 2020;22(8):1–41.
  • Hu R, Zheng H, Cao J, et al. Synthesis and in vitro characterization of carboxymethyl chitosan-CBA-doxorubicin conjugate nanoparticles as pH-Sensitive drug delivery systems. J Biomed Nanotechnol. 2017;13(9):1097–1105.
  • Yang B, Jiang J, Jiang L, et al. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol. 2020;149:108–115.
  • Wang F, Li JR, Chen C, et al. Preparation and synergistic chemo-photothermal therapy of redox-responsive carboxymethyl cellulose/chitosan complex nanoparticles. Carbohydr Polym. 2022;275:118714.
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.
  • Wei X, Liao J, Davoudi Z, et al. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar Drugs. 2018;16(11):439.
  • Zhang X, Zhang H, Yin L, et al. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin. J Biomed Nanotechnol. 2016;12(8):1688–1698.
  • Wang J, Liu J, Lu DQ, et al. Diselenide-crosslinked carboxymethyl chitosan nanoparticles for doxorubicin delivery: preparation and in vivo evaluation. Carbohydr Polym. 2022;292:119699.
  • Mi YQ, Zhang JJ, Tan WQ, et al. Preparation of doxorubicin-loaded carboxymethyl-beta-cyclodextrin/chitosan nanoparticles with antioxidant, antitumor activities and pH-sensitive release. Mar Drugs. 2022;20(5):278.
  • Guan Y, Wang L-y, Wang B, et al. Recent advances of D-alpha-tocopherol polyethylene glycol 1000 succinate based stimuli-responsive nanomedicine for cancer treatment. Curr Med Sci. 2020;40(2):218–231.
  • Lu B, Luo D, Zhao A, et al. pH responsive chitosan and hyaluronic acid layer by layer film for drug delivery applications. Prog Org Coat. 2019;135:240–247.
  • Li Y, Pei Q, Cui B, et al. A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. J Nanobiotechnol. 2021;19(1):1–12.
  • Du JZ, Lane LA, Nie SM. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015;219:205–214.
  • Cheng R, Feng F, Meng F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release. 2011;152(1):2–12.
  • Cheng XT, Xu HD, Ran HH, et al. Glutathione-depleting nanomedicines for synergistic cancer therapy. ACS Nano. 2021;15(5):8039–8068.
  • Wang X-H, Wei X-F, Liu J-H, et al. Chlorin e6-1,3-diphenylisobenzofuran polymer hybrid nanoparticles for singlet oxygen-detection photodynamic ablation. Methods Appl Fluoresc. 2021;9(2):025003.
  • Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev. 2003;55(2):199–215.
  • Zhang YL, Liang Y, He CW. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med. 2017;12:20.
  • Liu R, Li X, Huang N, et al. Toxicity of traditional Chinese medicine herbal and mineral products. Adv Pharmacol. 2020;87:301–346.
  • Li L, Wang J, Feng L, et al. Rubioncolin C, a natural naphthohydroquinone dimer isolated from rubia yunnanensis, inhibits the proliferation and metastasis by inducing ROS-mediated apoptotic and autophagic cell death in triple-negative breast cancer cells. J Ethnopharmacol. 2021;277:114184.
  • Zheng Q, Sun J, Li W, et al. Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch Oral Biol. 2020;118:104846.
  • Ma H-Y, Wang C-Q, He H, et al. Ethyl acetate extract of caesalpinia sappan L. inhibited acute myeloid leukemia via ROS-mediated apoptosis and differentiation. Phytomedicine. 2020;68:153142.
  • Zaib S, Hayyat A, Ali N, et al. Role of mitochondrial membrane potential and lactate dehydrogenase a in apoptosis. Anticancer Agents Med Chem. 2022;22(11):2048–2062.
  • Che Y, Tian Y, Chen R, et al. IL-22 ameliorated cardiomyocyte apoptosis in cardiac ischemia/reperfusion injury by blocking mitochondrial membrane potential decrease, inhibiting ROS and cytochrome C. Biochim Biophys Acta Mol Basis Dis. 2021;1867(9):166171.
  • Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46(6):372–383.
  • He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Sig Transduct Target Ther. 2021;6(1):1–17.
  • Kavitha K, Kowshik J, Kishore TKK, et al. Astaxanthin inhibits NF-kappa B and Wnt/beta-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochim Biophys Acta. 2013;1830(10):4433–4444.
  • Wang L, Cheng L, Ma L, et al. Alnustone inhibits the growth of hepatocellular carcinoma via ROS-mediated PI3K/Akt/mTOR/p70S6K axis. Phytother Res. 2022;36(1):525–542.
  • Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48(6):749–762.
  • Javelaud D, Besancon F. Inactivation of p21(WAF1) sensitizes cells to apoptosis via an increase of both p14(ARF) and p53 levels and an alteration of the Bax/Bcl-2 ratio. J Biol Chem. 2002;277(40):37949–37954.
  • Xu J, Qin N, Yao Y, et al. Geraniin inhibits bladder cancer cell growth via regulation of PI3K/AKT signaling pathways. Trop J Pharm Res. 2020;19(2):253–257.
  • Zhang Y, Xiao F, Liu X, et al. Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/akt signaling pathway. Toxicol In Vitro. 2017;41:232–244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.