208
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Folic acid engineered sulforaphane loaded microbeads for targeting breast cancer

, , , , , , & ORCID Icon show all
Pages 674-694 | Received 14 Jul 2022, Accepted 03 Nov 2022, Published online: 21 Nov 2022

References

  • Cancer statistics, 2020_21590, n.d.
  • Cancer AO, Who C. W.H.O. Report, C. Org, W.C. Database; 2010. Chapter 2; p. 7–31.
  • Alkabban FM, Ferguson T. Breast cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482286/
  • Fatima M, Sheikh A, Hasan N, et al. Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J. 2022;170:111156.
  • Singh V, Md S, Alhakamy NA, et al. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur Polym J. 2022;162:110883.
  • Kumbhar SA, Gorain B, Choudhury H, et al. Safety and toxicity issues of dendrimers. In: Kesharwani P, Jain NK, editors. Dendrimer-based nanotherapeutics. India: Elsevier; 2021. p. 143–162.
  • Singh D, Kesharwani P, Alhakamy NA, et al. Accentuating CircRNA-miRNA-transcription factors axis: a conundrum in cancer research. Front Pharmacol. 2021;12:784801.
  • Sheikh A, Alhakamy NA, Md S, et al. Recent progress of RGD modified liposomes as multistage rocket against cancer. Front Pharmacol. 2021;12:803304.
  • Khurana RK, Kumar R, Gaspar BL, et al. Clathrin-mediated endocytic uptake of PUFA enriched self-nanoemulsifying lipidic systems (SNELS) of an anticancer drug against triple negative cancer and DMBA induced preclinical tumor model. Mater Sci Eng C. 2018;91:645–658.
  • Oncojourn – Page 10, n.d.
  • Kesharwani P, Amin M, Giri N, et al. Dendrimers in targeting and delivery of drugs. In: Mishra V, Kesharwani P, Mohd Amin MC, Iyer A, editors. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Amsterdam: Elsevier Inc., 2017; p. 363–388.
  • Sheikh A, Md S, Alhakamy NA, et al. Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. Int J Pharm. 2022;620:121751.
  • Farhoudi L, Kesharwani P, Majeed M, et al. Polymeric nanomicelles of curcumin: potential applications in cancer. Int J Pharm. 2022;617:121622.
  • Mahmoudi A, Kesharwani P, Majeed M, et al. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf. B Biointerfaces. 2022;215:112481.
  • Rehman U, Parveen N, Sheikh A, et al. Polymeric nanoparticles-siRNA as an emerging nano-polyplexes against ovarian cancer. Colloids Surf B Biointerfaces. 2022;218:112766.
  • Mukherjee S, Mukherjee S, Abourehab MAS, et al. Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J. 2022;177:111471.
  • Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J Control Release. 2022;346:328–354.
  • Kesharwani P, Xie L, Mao G, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces. 2015;136:413–423.
  • Soni K, Rizwanullah M, Kohli K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells Nanomed Biotechnol. 2018;46(sup1):15–31.
  • Elbarbry F, Elrody N. Potential health benefits of sulforaphane: a RE of the experimental, clinical and epidemiological evidences and underlying mechanisms. J Med Plants Res. 2011;5:473–484.
  • Qazi A, Pal J, Maitah M, et al. Anticancer activity of a broccoli derivative, sulforaphane, in Barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol. 2010;3(6):389–399.
  • Ramirez MC, Singletary K. Regulation of estrogen receptor α expression in human breast cancer cells by sulforaphane. J Nutr Biochem. 2009;20(3):195–201.
  • Shwter AN, Abdullah NA, Alshawsh MA, et al. Chemoprevention of colonic aberrant crypt foci by gynura procumbens in rats. J Ethnopharmacol. 2014;151(3):1194–1201.
  • Jiang X, Liu Y, Ma L, et al. Chemopreventive activity of sulforaphane. Drug Des Dev Ther. 2018;12:2905–2913.
  • Hanausek M, Walaszek Z, Slaga TJ. Agents to prevent cancer. Integr Cancer Ther. 2003;2(2):139–144.
  • Soni K, Kohli K. Sulforaphane-decorated gold nanoparticle for anti-cancer activity: in vitro and in vivo studies. Pharm Dev Technol. 2019;24(4):427–438.
  • Sci-Hub. Sulforaphane-conjugated selenium nanoparticles: towards synergistic anticancer effect, n.d.
  • Ayyappan T, Shanmugam S, Vetrichelvan T. An overview on natural polymers in novel drug delivery system. Trends Drug Deliv. 2016;3:1–14.
  • Stanekzai A, Sudhakar CK, Zhakfar AM, et al. Recent approaches in transdermal drug delivery system. Res J Pharm Technol. 2019;12(9):4550–4558.
  • Kairam N. Development of flaxseed and garlic oil hydrogel beads by novel ionotropic gelation method. J Food Process Preserv. 2020;44(10):e14821.
  • Jain D, Bar-Shalom D. Alginate drug delivery systems : application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014;40(12):1576–1584.
  • Azad AK, Al-Mahmood SMA, Chatterjee B, et al. Encapsulation of black seed oil in alginate beads as a pH-sensitive carrier for intestine-targeted drug delivery: in vitro, in vivo and ex vivo study. Pharmaceutics. 2020;12(3):219.
  • Xu J, Wei X, Zhang X, et al. Multiplexed detection of bladder cancer microRNAs based on core-shell-shell magnetic quantum dot microbeads and Cascade signal amplification. Sens Actuators B Chem. 2021;349:130824.
  • Gavini V, Reddy BP, Rao KS, et al. Formulation & in-vitro evaluation of wax incorporated floating beads of silymarin. Int J PharmTech Res. 2014;6(6):1824–1832.
  • Jaiswal D, Bhattacharya A, Yadav IK, et al. Formulation and evaluation of oil entrapped floating alginate beads of ranitidine hydrochloride. Int J Pharm Pharm Sci. 2009;1:128–140.
  • Zhai J, Wang Y, Zhou X, et al. Long-term sustained release poly(lactic-co-glycolic acid) microspheres of asenapine maleate with improved bioavailability for chronic neuropsychiatric diseases. Drug Deliv. 2020;27(1):1283–1291.
  • Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. Int J Biol Macromol. 2020;151:830–844.
  • Patil J, Marapur S, Gurav P, et al. Ionotropic gelation and polyelectrolyte complexation technique: novel approach to drug encapsulation. In: Mishra M, editor. Handbook of Encapsulation and Controlled Release. Boca Raton: CRC Press; 2015; p. 273–296.
  • Boddu A, Obireddy SR, Zhang D, et al. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv. 2022;29(1):2481–2490.
  • Vo D-V, Truong V-D, Tran T-D, et al. A new and effective approach to the synthesis of sulforaphane. Lett Org Chem. 2015;13(1):7–10.
  • Indora N, Kaushik D. Design, development and evaluation of ethosomal gel of fluconazole for topical fungal infection. Int J Eng Sci Invent Res Dev. 2015;1:280–306.
  • Md MH, Sabbir AH, Mumu MI, et al. Pharmaceutical preformulation for product development & analytical techniques use in new dosage form. Int J Pharm Ther. 2017;8:16–32.
  • Kokotou MG, Revelou PK, Pappas C, et al. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem. 2017;237:566–573.
  • Yu X, Ma F, Zhang L, et al. Extraction and quantification of sulforaphane and indole-3-carbinol from rapeseed tissues using QuEChERS coupled with UHPLC-MS/MS. Molecules. 2020;25(9):2149.
  • Mujtaba A, Ali M, Kohli K. Formulation of extended release cefpodoxime proxetil chitosan-alginate beads using quality by design approach. Int J Biol Macromol. 2014;69:420–429.
  • Kalbhare SB, Bhandwalkar MJ, Pawar RK, et al. Sodium alginate cross-linked polymeric microbeads for oral sustained drug delivery in hypertension: formulation and evaluation. Asia J Res Pharm Sci. 2020;10(3):153–157.
  • Fursule RA, Patra CN, Patil GB, et al. Study of multiparticulate floating drug delivery system prepared by emulsion gelation technique. Int J ChemTech Res. 2009;1:162–167.
  • Rajam RP, Balaji A, Shanmugam KRA, et al. Formulation and evaluation of vildagliptin beads by emulsion gelation method. Res J Pharm Technol. 2020;13:1799–1803.
  • Anderson KE, Eliot LA, Stevenson BR, et al. Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharm Res. 2001;18(3):316–322.
  • Gawde KA, Kesharwani P, Sau S, et al. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. J Colloid Interface Sci. 2017;496:290–299.
  • Babu VR, Sairam M, Hosamani KM, et al. Preparation of sodium alginate-methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym. 2007;69(2):241–250. .
  • Badarinath AV, Ravi Kumar Reddy J, Mallikarjuna Rao K, et al. Formulation and characterization of alginate microbeads of flurbiprofen by ionotropic gelation technique. Int. J. ChemTech Res. 2010;2:361–367.
  • Menon TV, Sajeeth CI. Formulation and evaluation of sustained release sodium alginate microbeads of carvedilol. Int J PharmTech Res. 2013;5:746–753.
  • Dhote V, Mishra DK. Formulation and characterization of microbeads as a carrier for the controlled release of rioprostil. Asian J Pharm Pharmacol. 2015;1:27–32.
  • Neupane YR, Srivastava M, Ahmad N, et al. Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm. 2014;477(1–2):601–612.
  • Lestari RS, Kustiningsih I, Irawanto D, et al. Preparation of chitosan microspheres as carrier material to controlled release of urea fertilizer. South Afr J Chem Eng. 2021;38:70–77.
  • Khorshidian N, Mahboubi A, Kalantari N, et al. Chitosan-coated alginate microcapsules loaded with herbal galactagogue extract: formulation optimization and characterization. Iran J Pharm Res. 2019;18(3):1180–1195.
  • Huang J, Bai F, Wu Y, et al. Development and evaluation of lutein-loaded alginate microspheres with improved stability and antioxidant. J Sci Food Agric. 2019;99(11):5195–5201.
  • Rehman S, Nabi B, Baboota S, et al. Tailoring lipid nanoconstructs for the oral delivery of paliperidone: formulation, optimization and in vitro evaluation. Chem Phys Lipids. 2021;234:105005.
  • McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci. 1998;6(2):153–163.
  • Darbandi A, Yari F, Sharifi Z. Study on the impact of the drug (doxorubicin)-loaded platelet microparticles on cancer cells; the daudi and vero cell lines. J Drug Deliv Sci Technol. 2022;70:103187. .
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 2015;32(4):1438–1450.
  • Mohammadi A, Abdolvand H, Isfahani AP. Alginate beads impregnated with sulfonate containing calix[4]arene-intercalated layered double hydroxides: in situ preparation, characterization and methylene blue adsorption studies. Int J Biol Macromol. 2020;146:89–98.
  • Mohd Fauziee NA, Chang LS, Wan Mustapha WA, et al. Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). Int J Biol Macromol. 2021;167:1135–1145.
  • Wu XX, Zhang Y, Hu T, et al. Long-term antibacterial composite via alginate aerogel sustained release of antibiotics and Cu used for bone tissue bacteria infection. Int J Biol Macromol. 2021;167:1211–1220.
  • He L, Shang Z, Liu H, et al. Alginate-based platforms for cancer-targeted drug delivery. Biomed Res Int. 2020;2020:1487259.
  • Ibrahim OM, El-Deeb NM, Abbas H, et al. Alginate based tamoxifen/metal dual core-folate decorated shell: nanocomposite targeted therapy for breast cancer via ROS-driven NF-κB pathway modulation. Int J Biol Macromol. 2020;146:119–131.
  • Takei MN, Kuda T, Taniguchi M, et al. Detection and isolation of low molecular weight alginate- and laminaran-susceptible gut indigenous bacteria from ICR mice. Carbohydr Polym. 2020;238:116205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.