313
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Development of hydrogel-forming microneedles for transdermal delivery of albendazole from liquid reservoir

, , , , , , , & ORCID Icon show all
Pages 1101-1120 | Received 24 Sep 2022, Accepted 08 Dec 2022, Published online: 18 Dec 2022

References

  • Permana AD, Paredes AJ, Zanutto FV, et al. Albendazole nanocrystal-based dissolving microneedles with improved pharmacokinetic performance for enhanced treatment of cystic echinococcosis. ACS Appl Mater Interfaces. 2021;13(32):38745–38760.
  • Hong ST. Albendazole and praziquantel: review and safety monitoring in Korea. Infect Chemother. 2018;50(1):1–10.
  • Pettarin M, Bolger MB, Chronowska M, et al. A combined in vitro in-silico approach to predict the oral bioavailability of borderline BCS class II/IV weak base albendazole and its main metabolite albendazole sulfoxide. Eur J Pharm Sci. 2020;155:105552.
  • Kearney MC, McKenna PE, Quinn HL, et al. Design and development of liquid drug reservoirs for microneedle delivery of poorly soluble drug molecules. Pharmaceutics. 2019;11(11):605.
  • Hu C, Zhang F, Fan H. Improvement of the bioavailability and anti-hepatic alveolar echinococcosis effect of albendazole-isethionate/hypromellose acetate succinate (HPMC-AS) complex. Antimicrob Agents Chemother. 2021;65(7):e02233.
  • Ananda PWR, Elim D, Zaman HS, et al. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine. Int J Pharm. 2021;609:121204.
  • Ning X, Wiraja C, Chew WTS, et al. Transdermal delivery of chinese herbal medicine extract using dissolvable microneedles for hypertrophic scar treatment. Acta Pharm Sin B. 2021;11(9):2937–2944.
  • Coulman S, Allender C, Birchall J. Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy. Crit Rev Ther Drug Carr Syst. 2006;23(3):205–258.
  • Donnelly RF, Singh TRR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22(23):4879–4890.
  • Anjani QK, Sabri AB, Utomo E, et al. Elucidating the impact of surfactants on the performance of dissolving microneedle array patches. Mol Pharm. 2022;19(4):1191–1208.
  • Donnelly RF, McCrudden MTC, Alkilani AZ, et al. Hydrogel-forming microneedles prepared from ‘super swelling’ polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One. 2014;9(10):e111547.
  • Mistilis MJ, Joyce JC, Esser ES, et al. Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Deliv Transl Res. 2017;7(2):195–205.
  • Li Z, Chen Z, Chen H, et al. Polyphenol-based hydrogels: pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioact Mater. 2022;17:49–70.
  • Wei S, Li J, He H, et al. A three-layered hydrogel patch with hierarchy releasing of PLGA nanoparticle drugs decrease neointimal hyperplasia. Smart Mater Med. 2022;3:139–147.
  • Turner JG, White LR, Estrela P, et al. Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci. 2022;21(2):2000307.
  • Oh NG, Hwang SY, Na YH. Fabrication of a PVA-based hydrogel microneedle patch. ACS Omega. 2022;7(29):25179–25185.
  • Tekko IA, Chen G, Domínguez-Robles J, et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm. 2020;586:119580.
  • Cheung K, Das DB. Microneedles for drug delivery: trends and progress. Drug Deliv. 2016;23(7):2338–2354.
  • Zhang XP, Wang BB, Li WX, et al. In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice. Eur J Pharm Biopharm. 2021;160:1–8.
  • Rouphael NG, Paine M, Mosley R, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095):649–658.
  • Indermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–138.
  • Vicente-Pérez EM, Quinn HL, McAlister E, et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm Res. 2016;33(12):3072–3080.
  • Rad ZF, Prewett PD, Davies GJ. An overview of microneedle applications, materials, and fabrication methods. Beilstein J Nanotechnol. 2021;12:1034–1046.
  • Tucak A, Sirbubalo M, Hindija L, et al. Microneedles: characteristics, materials, production methods and commercial development. Micromachines. 2020;11(11):961–930.
  • Meena AK, Sharma K, Kandaswamy M, et al. Formulation development of an albendazole self-emulsifying drug delivery system (SEDDS) with enhanced systemic exposure. Acta Pharm. 2012;62(4):563–580.
  • Donnelly RF, Raj TR, Singh AZ, et al. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013;451(1–2):76–91.
  • Pan X, Li Y, Pang W, et al. Preparation, characterisation and comparison of glabridin-loaded hydrogel-forming microneedles by chemical and physical cross-linking. Int J Pharm. 2022;617:121612.
  • Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, et al. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673.
  • Wang D, Yang F, Cong L, et al. Lignin-inspired hydrogel matrixes with adhesion and toughness for all-hydrogel supercapacitors; 2022. Available from SSRN: https://ssrn.com/abstract = 4096790.
  • Kamoun EA, Kenawy ERS, Tamer TM, et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem. 2015;8(1):38–47.
  • Singh A, Bali A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J Anal Sci Technol. 2016;7(1):1–13.
  • Ripolin A, Quinn J, Larrañeta E, et al. Successful application of large microneedle patches by human volunteers. Int J Pharm. 2017;521(1–2):92–101.
  • Vora LK, Donnelly RF, Larrañeta E, et al. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: proof of concept. J Control Release. 2017;265:93–101.
  • Abdelghany S, Tekko IA, Vora L, et al. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics. 2019;11(7):308.
  • Nagra U, Barkat K, Ashraf MU, et al. Feasibility of enhancing skin permeability of acyclovir through sterile topical lyophilized wafer on self-dissolving microneedle-treated skin. Dose Response. 2022;20(2):15593258221097594.
  • Paulo C, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • PermeGear Inc. Diffusion testing fundamentals. PermeGear Inc. [Internet]; 2014:1–8. Available from: permegear.com/wp-content/uploads/2015/08/primer.pdf.
  • Nguyen HX, Bozorg BD, Kim Y, et al. Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88–103.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258.
  • Anjani QK, Permana AD, Cárcamo-Martínez Á, et al. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur J Pharm Biopharm. 2021;158:294–312.
  • Yan S, Wang W, Li X, et al. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J Mater Chem B. 2018;6(40):6377–6390.
  • Mehrotra T, Zaman MN, Prasad BB, et al. Rapid immobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutaraldehyde hydrogel for biological treatment of municipal wastewater. Environ Sci Pollut Res Int. 2020;27(9):9167–9180.
  • Chen XY, Low HR, Loi XY, et al. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel: characterizations and biocompatibility studies for wound dressing. J Biomed Mater Res B Appl Biomater. 2019;107(6):2140–2151.
  • Bialik-Was K, Pluta K, Malina D, et al. The effect of glycerin content in sodium alginate/poly(vinyl alcohol)-based hydrogels for wound dressing application. Int J Mol Sci. 2021;22(21):12022.
  • Kathuria H, Lim D, Cai J, et al. Microneedles with tunable dissolution rate. ACS Biomater Sci Eng. 2020;6(9):5061–5068.
  • Fithri AN, Wijaya DP, Taher T, et al. Optimization of chitosan–tapioca starch composite as polymer in the formulation of gingival mucoadhesive patch film for delivery of gambier (Uncaria gambir Roxb) leaf extract. Int J Biol Macromol. 2020;144:289–295.
  • Rashid FL, Hashim A. Structural, swelling and water absorption properties of new polymer blends for modern applications. Nanosis, Nanomater Nanotehnol. 2021;19:905–912.
  • Leplingard F, Borne S, Martinelli C, et al. FWM-assisted Raman laser for second-order Raman pumping. Opt. InfoBase Conf. Pap. 2003. p. 431–432.
  • Sandby-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83(6):410–413.
  • Bozdoğan A, Aksakal B, Denktaş C, et al. Prestretching effect and recovery process of polyvinyl alcohol film crosslinked with tartaric acid. J Appl Polym Sci. 2020;137(46):49421–49415.
  • Vithani K, Jannin V, Pouton CW, et al. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev. 2019;142:16–34.
  • Permanadewi I, Kumoro AC, Wardhani DH, et al. Modelling of controlled drug release in gastrointestinal tract simulation. J Phys Conf Ser. 2019;1295:012063.
  • Wu IY, Bala S, Škalko-Basnet N, et al. Interpreting non-linear drug diffusion data: utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur J Pharm Sci. 2019;138:105026.
  • Li Y, Wang C, Luan Y, et al. Preparation of pH-responsive cellulose nanofibril/sodium alginate based hydrogels for drug release. J Appl Polym Sci. 2022;139(7):51647–51649.
  • Concha L, Pires ALR, Moraes AM, et al. Cost function analysis applied to different kinetic release models of Arrabidaea chica Verlot extract from chitosan/alginate membranes. Polymers. 2022;14(6):1109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.