192
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and manufacture of 3D-cylindrical scaffolds based on PLA/TPU/n-HA with the help of dual salt leaching technique suggested for use in cancellous bone tissue engineering

, , ORCID Icon, &
Pages 1430-1452 | Received 19 Nov 2022, Accepted 11 Jan 2023, Published online: 03 Feb 2023

References

  • Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3(10):589–601.
  • Mhanna R, Hasan A. Introduction to tissue engineering, tissue eng. Artif Organs Regen Med Smart Diagnostics Pers Med. 2016;1–2:1–34.
  • Biomaterials Science and Engineering – Joon B. Park – Google Books. n.d [cited accessed 2022 July 29]. Available from https://books.google.com/books?hl=en&lr=&id=y9rTBwAAQBAJ&oi=fnd&pg=PA1&dq=biomaterials+science&ots=SyZJrqBGru&sig=IRBU79Uo4s1afHf3xpg8i4mFWno#v=onepage&q=biomaterialsscience&f=false.
  • Ratner BD. New ideas in biomaterials science – a path to engineered biomaterials. J Biomed Mater Res. 1993;27(7):837–850.
  • Zou W, Huang J, Su J, et al. Review on modification of poly(lactic acid) in physical and mechanical properties. ES Food & Agroforestry. 2021;6:3–11.
  • Yazdaninia A, Jafari SH, Ehsani M, et al. An assessment on the effect of trifluoropropyl-POSS and blend composition on morphological, thermal and thermomechanical properties of PLA/TPU. J Therm Anal Calorim. 2020;139(1):279–292.
  • Qu Z, Yin D, Zhou H, et al. Cellular morphology evolution in nanocellular poly (lactic acid)/thermoplastic polyurethane blending foams in the presence of supercritical N2. Eur Polym J. 2019;116:291–301.
  • Yazdaninia A, Khonakdar HA, Jafari SH, et al. Influence of trifluoropropyl-POSS nanoparticles on the microstructure, rheological, thermal and thermomechanical properties of PLA. RSC Adv. 2016;6(43):37149–37159.
  • Zou W, Huang J, Zeng W, et al. Effect of ethylene–butylacrylate–glycidyl methacrylate on compatibility properties of poly (butylene terephthalate)/thermoplastic polyurethane blends. ES Energy Environ. 2020.
  • Liu C, Yin Q, Li X, et al. A waterborne polyurethane-based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv Compos Hybrid Mater. 2021;4(1):138–149.
  • Song H, Zhang Q, Zhang Y, et al. Waterborne polyurethane/3-amino-polyhedral oligomeric silsesquioxane (NH2-POSS) nanocomposites with enhanced properties. Adv Compos Hybrid Mater. 2021;4:629–638.
  • Zhu Q, Zhao Y, Miao B, et al. Hydrothermally synthesized ZnO-RGO-PPy for water-borne epoxy nanocomposite coating with anticorrosive reinforcement. Prog Org Coat. 2022;172:107153.
  • Yin H, Zhong W, Yin M, et al. Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Adv Compos Hybrid Mater. 2022;5(3):2031–2041.
  • Yao F, Xie W, Ma C, et al. Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@ copper foam hybrid nanofillers. Compos Part B: Eng. 2022;245:110236.
  • Yan X, Zhang S, Tang W, et al. Thermal conductivity of PBX calculated by phonons of explosive and binder molecular crystals. ES Energy Environ. 2021;11:74–83.
  • Xu X, Yao F, Ali OAA, et al. Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv Compos Hybrid Mater. 2022;5(3):2002–2011.
  • Xie W, Yao F, Gu H, et al. Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater. 2022;5:1003–1016.
  • Sun D, Yan J, Ma X, et al. Tribological investigation of self-healing composites containing metal/polymer microcapsules. ES Mater Manuf. 2021;14:59–72.
  • Ouyang L, Huang W, Huang M, et al. Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater. 2022;5:1126–1136.
  • Li H, Huang W, Qiu B, et al. Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites. Adv Compos Hybrid Mater. 2022;5:1–11.
  • Luo H, Su Y, Wang X, et al. Preparation and properties of ethylene–acrylic acid co polymer/Surlyn-Zn2+/zinc stearate blends ionic interlayer membrane. Adv Compos Hybrid Mater. 2022;5(3):2078–2091.
  • Guo J, Chen Z, El-Bahy ZM, et al. Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater. 2022;5:899–906.
  • Dai B, Ma Y, Dong F, et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compos Hybrid Mater. 2022;5(2):704–754.
  • Davachi SM, Kaffashi B. Polylactic Acid in medicine, Polym Plast Technol Eng. 2015;54:944–967.
  • Santoro M, Shah SR, Walker JL, et al. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–212.
  • Sheng M, Wu L, Li X, et al. Preparation and characterization of super-toughened poly (lactic acid)/cross-linked polyurethane blends via one-step dynamic vulcanization. Eng. Sci. 2021;19:89–99.
  • Zhou Y, Wang P, Ruan G, et al. Synergistic effect of P [MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater Manuf. 2021;11:20–29.
  • Feng Y, Li Y, Ye X, et al. Synthesis and characterization of 2, 5-furandicarboxylic acid poly (butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties. J Mater Sci. 2022;57:10997–11012.
  • Agrawal CM. Reconstructing the human body using biomaterials. JOM 1998;50:31–35.
  • Biomedical Science, Engineering and Technology – Google Books. n.d. [cited 2022 July 31]. Available from: https://books.google.com/books?hl=en&lr=&id=GGmQDwAAQBAJ&oi=fnd&pg=PA247&dq=Polylactic+acid+as+good+biomaterials&ots=91cbFcpa_-&sig=2JlG84gMWjuTYcZqzFVY9tUi4-A#v=onepage&q=Polylacticacidasgoodbiomaterials&f=false.
  • Polylactic Acid Technol. 2005;559–607.
  • Li G, Wang L, Lei X, et al. Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater. 2022;5(2):853–863.
  • Wang P, Song T, Abo-Dief HM, et al. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater. 2022;5:1100–1110.
  • Shah Mohammadi M, Bureau MN, Nazhat SN. Polylactic acid (PLA) biomedical foams for tissue engineering. Biomed Foam Tissue Eng Appl. 2014;313–334.
  • Zhang Y, Liu L, Zhao L, et al. Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater. 2022;5(3):2601–2610.
  • Ma Y, Xie X, Yang W, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors, adv. Adv Compos Hybrid Mater. 2021;4(4):906–924.
  • Hoveizi E, Nabiuni M, Parivar K, et al. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int. 2014;38(1):41–49.
  • Arun A, Malrautu P, Laha A, et al. Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci. 2021;16:71–81.
  • Alam F, Varadarajan KM, Kumar S. 3D printed polylactic acid nanocomposite scaffolds for tissue engineering applications. Polym Test. 2020;81:106203.
  • Xu T, Yang H, Yang D, et al. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9(25):21094–21104.
  • Morelli S, Salerno S, Holopainen J, et al. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid–nanohydroxyapatite fiber scaffolds. J Biotechnol. 2015;204:53–62.
  • Arif ZU, Khalid MY, Noroozi R, et al. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol. 2022;218:930–968.
  • Hassanajili S, Karami-Pour A, Oryan A, et al. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C. 2019;104:109960.
  • Samadian H, Farzamfar S, Vaez A, et al. A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and taurine for bone regeneration. Sci Rep. 2020;101(10):1–12.
  • Carbajal-De la Torre G, Zurita-Méndez NN, Ballesteros-Almanza ML, et al. Synthesis and characterization of polylactic/polycaprolactone/hydroxyapatite (PLA/PCL/HAp) scaffolds. MRS Adv. 2021;639(6):903–906.
  • Sadiasa A, Nguyen TH, Lee BT. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications. J Biomater Sci Polym Ed. 2014;25(2):150–167. 10.1080/09205063.2013.846633.
  • Ghassemi B, Estaji S, Mousavi SR, et al. In-depth study of mechanical properties of poly(lactic acid)/thermoplastic polyurethane/hydroxyapatite blend nanocomposites, J Mater Sci. 2022;5714:7250–7264.
  • Faghihi-Rezaei V, Khonakdar HA, Goodarzi V, et al. Hydroxyapatite/TPU/PLA nanocomposites: morphological, dynamic-mechanical, and thermal study. Green Process Synth. 2022;11(1):996–1012.
  • Jing X, Mi HY, Salick MR, et al. Morphology, mechanical properties, and shape memory effects of poly(lactic acid)/thermoplastic polyurethane blend scaffolds prepared by thermally induced phase separation. J Cell Plast. 2014;50:361–379. 10.1177/0021955X14525959.
  • Cai J, Murugadoss V, Jiang J, et al. Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater 2022;52:641–650.
  • Yazdaninia A, Jafari SH, Ehsani M, et al. Solid State viscoelastic properties, morphological and melt rheological studies on PLA/TPU/POSS nanocomposites. Polym Plast Technol Eng. 2019;58(10):1036–1045.
  • Nahanmoghadam A, Asemani M, Goodarzi V, et al. In vivo investigation of PCL/PHBV/hydroxyapatite nanocomposite scaffold in regeneration of critical-sized bone defects. Fibers Polym. 2021;22:2507–2516.
  • Nahanmoghadam A, Asemani M, Goodarzi V, et al. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. J Biomed Mater Res. 2021;109(6):981–993.
  • Yang W, Peng D, Kimura H, et al. Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater. 2022;5(4):3146–3157.
  • Hou C, Yang W, Kimura H, et al. Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol. 2023;142:185–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.