250
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of UV curable biocompatible hydrophilic copolymers containing siloxane units

, , , , , , , & show all
Pages 1539-1558 | Received 30 Sep 2022, Accepted 16 Jan 2023, Published online: 06 Feb 2023

References

  • Howard D, Buttery LD, Shakesheff KM, et al. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213( 1):66–72. doi:10.1111/j.1469-7580.2008.00878.x
  • Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42( 2):323–337. doi:10.1007/s10439-013-0859-6
  • Ross AM, Jiang Z, Bastmeyer M, et al. Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small. 2012;8( 3):336–355.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;11:290602.
  • Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8( 5):607–626. doi:10.1586/erd.11.27
  • Arnal-Pastor M, Comín-Cebrián S, Martínez-Ramos C, et al. Hydrophilic surface modification of acrylate-based biomaterials. J Biomater Appl. 2016;30( 9):1429–1441.
  • Ovsianikov A, Malinauskas M, Schlie S, et al. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 2011;7( 3):967–974.
  • Kim D-H, Seo C-H, Han K, et al. Guided Cell migration on microtextured substrates with variable local density and anisotropy. Adv Funct Mater. 2009;19( 10):1579–1586. doi:10.1002/adfm.200801174
  • Psarra E, Foster E, König U, et al. Growth factor-bearing polymer brushes-versatile bioactive substrates influencing cell response. Biomacromolecules. 2015;16( 11):3530–3542.
  • Deepa G, Thulasidasan AKT, Anto RJ, et al. Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. Int J Nanomed. 2012;7:4077–4088.
  • Sujin K, Byung HS, Chungmo Y, et al. Development of poly(HEMA-Am) polymer hydrogel filler for soft tissue reconstruction by facile polymerization. Polymers. 2018;10( 7):772.
  • Jui-Hsiang L, Yi-Hua H, Kai-Ti C, et al. Self-healable porous polyampholyte hydrogels with higher water content as cell culture scaffolds for tissue engineering applications. ACS Appl Bio Mater. 2020;3:5446–5453.
  • Dey RE, Wimpenny I, Gough JE, et al. Poly(vinylphosphonic acid-co-acrylic acid) hydrogels: the effect of copolymer composition on osteoblast adhesion and proliferation. J Biomed Mater Res. 2018;106( 1):255–264. doi:10.1002/jbm.a.36234
  • Ronca A, Maiullari F, Milan M, et al. Surface functionalization of acrylic based photocrosslinkable resin for 3D printing applications. Bioact Mater. 2017;2( 3):131–137.
  • Tsai EC, Dalton PD, Shoichet MS, et al. Matrix inclusion within synthetic hydrogel quidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials. 2006;27( 3):519–533. doi:10.1016/j.biomaterials.2005.07.025
  • Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1( 3):161–176. doi:10.1016/j.bsbt.2015.08.002
  • Pedraza E, Brady A-C, Fraker C, et al. Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci Polym Ed. 2013;24( 9):1041–1056.
  • Lantada AD, Iniesta HA, Sánchez BP, et al. Free-form rapid-prototyped PDMS scaffolds incorporating growth factors promote chondrogenesis. Adv Mater Sci Eng. 2014;2014:612976.
  • Simmons A, Padsalgikar AD, Ferris LM, et al. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials. 2008;29( 20):2987–2995.
  • Cox ME, Dunn B. Oxygen diffusion in poly(dimethyl siloxane) using fluorescence quenching. I. Measurement technique and analysis. J Polym Sci A Polym Chem. 1986;24( 4):621–636. doi:10.1002/pola.1986.080240405
  • Merkel T, Bondar V, Nagai K, et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci B Polym Phys. 2000;38( 3):415–434. doi:10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
  • Vollmer AP, Probstein RF, Gilbert R, et al. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab Chip. 2005;5( 10):1059–1066. doi:10.1039/b508097e
  • Razavi M, Primavera R, Vykunta A, et al. Silicone-based bioscaffolds for cellular therapies. Mater Sci Eng C Mater Biol Appl. 2021;119:111615. doi:10.1016/j.msec.2020.111615
  • Eddington DT, Puccinelli JP, Beebe DJ. Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens Actuators B Chem. 2006;114( 1):170–172. doi:10.1016/j.snb.2005.04.037
  • Chen I-J, Lindner E. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir. 2007;23( 6):3118–3122. doi:10.1021/la0627720
  • Liu J, Yao Y, Li X, et al. Fabrication of advanced polydimethylsiloxane-based functional materials: bulk modifications and surface functionalizations. Chem Eng J. 2021;408:127262. doi:10.1016/j.cej.2020.127262
  • Wolf MP, Salieb-Beugelaar GB, Hunziker P. PDMS with designer functionalities – properties, modifications strategies, and applications. Prog Polym Sci. 2018;83:97–134. doi:10.1016/j.progpolymsci.2018.06.001
  • Shakeri A, Jarad NA, Khan S, et al. Bio-functionalization of microfluidic platforms made of thermoplastic materials: a review. Anal Chim Acta. 2022;1209:339283. doi:10.1016/j.aca.2021.339283
  • Sun W, Liu W, Wu Z, et al. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol Rapid Commun. 2020;41( 8):1900430. doi:10.1002/marc.201900430
  • Yilgör E, Yilgör I. Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci. 2014;39( 6):1165–1195. doi:10.1016/j.progpolymsci.2013.11.003
  • Yu D, Zhao Y, Li H, et al. Preparation and evaluation of hydrophobic surfaces of polyacrylate-polydimethylsiloxane copolymers for anti-icing. Prog Org Coat. 2013;76( 10):1435–1444. doi:10.1016/j.porgcoat.2013.05.036
  • Park H-S, Yang I-M, Wu J-P, et al. Synthesis of silicone-acrylic resins and their applications to superweatherable coatings. J Appl Polym Sci. 2001;81( 7):1614–1623. doi:10.1002/app.1592
  • Wang H, Liu W, Yan Z, et al. Synthesis and characterization of UV-curable acrylate films modified by functional methacrylate terminated polysiloxane hybrid oligomers. RSC Adv. 2015;5( 100):81838–81846. doi:10.1039/C5RA17240C
  • Semsarzadeh MA, Ghahramani M. Synthesis and morphology of polyacrylate-poly(dimethyl siloxane) block copolymers for membrane application. Macromol Res. 2015;23( 10):898–908. doi:10.1007/s13233-015-3112-3
  • Pang B, Zhang J, Pang M, et al. Design and preparation of a new polyurea–polysiloxane–polyether copolymer with a block soft segment prepared by utilizing aza-Michael addition reaction. Polym Chem. 2018;9( 7):869–877. doi:10.1039/C7PY01525A
  • Sharmaa S, Mandhani A, Basuad SBB. Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. Acta Biomater. 2021;129:122–137.
  • Dehghan M, Mehrizi MK, Nikukar H. Modeling and optimizing a polycaprolactone/gelatin/polydimethylsiloxane nanofiber scaffold for tissue engineering: using response surface methodology. J Text Inst. 2021;112( 3):482–493. doi:10.1080/00405000.2020.1766317
  • Dehghan M, Nikukar H, Mehrizi MK. Optimizing the physical parameters of polycaprolactone-gelatinpolydimethylsiloxane composite nanofiber scaffold for tissue engineering application. J Ind Text. 2022;51( 9):1445–1466. doi:10.1177/1528083720960156
  • Dehghan M, Nikukar H, Mehrizi MK. Evaluation of physicochemical properties of polycaprolactone/gelatin/polydimethylsiloxane hybrid nanofbers as potential scafolds for elastic tissue engineering. Polym Bull. 2022;79( 12):10881–10908. ·10.1007/s00289-021-04071-4
  • Rodríguez R, Barandiaran MJ, Asua JM. Polymerization strategies to overcome limiting monomer conversion in silicone-acrylic miniemulsion polymerization. Polymer. 2008;49( 3):691–696. doi:10.1016/j.polymer.2007.12.027
  • Park JY, Ahn D, Choi YY, et al. Surface chemistry modification of PDMS elastomers with boiling water improves cellular adhesion. Sensor Actuators B Chem. 2012;173:765–771. doi:10.1016/j.snb.2012.06.096
  • Wu MH. Simple poly (dimethylsiloxane) surface modification to control cell adhesion. Surf Interface Anal. 2009;41( 1):11–16. doi:10.1002/sia.2964
  • Kang K, Kang G, Lee BS, et al. Generation of patterned neuronal networks on cell-repellant poly(oligo(ethylene glycol) methacrylate) films. Chem Asian J. 2010;5( 8):1804–1809.
  • Rogers CI, Pagaduan JV, Nordin GP, et al. Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal Chem. 2011;83( 16):6418–6425.
  • Koh W-G, Revzin A, Simonian A, et al. Control of mammalian cell and bacteria adhesion on substrates micropatterned with poly(ethylene glycol) hydrogels. Biomed Microdevices. 2003;5( 1):11–19. doi:10.1023/A:1024455114745
  • Revzin A, Tompkins RG, Toner M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir. 2003;19( 23):9855–9862. doi:10.1021/la035129b
  • Schneider MH, Willaime H, Tran Y, et al. Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfluidic systems of complex geometry. Anal Chem. 2010;82( 21):8848–8855.
  • Tu Q, Wang J-C, Zhang Y, et al. Surface modification of poly(dimethylsiloxane) and its applications in microfluidics-based biological analysis. Rev Anal Chem. 2012;31:177–192.
  • Bukelskienė V, Baltriukienė D, Bironaitė D, et al. Muscle-derived primary stem cell lines for heart repair. Semin Cardiol. 2005;11:99–105.
  • Marcu I, Daniels ES, Dimonie VL, et al. Incorporation of alkoxysilanes into model latex systems: vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate. Macromolecules. 2003;36( 2):328–332. doi:10.1021/ma021288a
  • Reis AV, Fajardo AR, Schuquel TA, et al. Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly(vinyl alcohol) and poly(acrylic acid): is this reaction mechanism still unclear? J Org Chem. 2009;74( 10):3750–3757.
  • Van Dijk-Wolthuis WNE, Kettenes-van den Bosch JJ, van der Kerk-van Hoof A, et al. Reaction of dextran with glycidyl methacrylate: an unexpected transesterification. Macromolecules. 1997;30( 11):3411–3413. doi:10.1021/ma961764v
  • Kaczmarek H, Galka P. Effect of Irgacure 651 initiator on poly(methyl methacryltate) photostability studied by UV-Vis spectroscopy. Open Process Chem J. 2008;1( 1):8–11. doi:10.2174/1875180600801010008
  • Teixeira S, Giudici R, Bossmann SH, et al. Approaches towards a technically feasible photoinitiated prepolymerization of methyl methacrylate. Chem Eng Proc. 2004;43( 10):1317–1328. doi:10.1016/j.cep.2003.12.007
  • Johnston ID, McCluskey DK, Tan CKL, et al. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromech Microeng. 2014;24( 3):035017. doi:10.1088/0960-1317/24/3/035017
  • O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14( 3):88–95. doi:10.1016/S1369-7021(11)70058-X
  • Chang HI, Wangs Y. Chapter 27: Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D, editor. Regenerative medicine and tissue engineering – cells and biomaterials. Rijeka: InTech; 2011. p. 569–588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.