276
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design and development of biodegradable POSS-PCL-Zeolite (β) nano-scaffold for potential applications in bone regeneration

, ORCID Icon, , & ORCID Icon
Pages 1559-1578 | Received 13 Oct 2022, Accepted 17 Jan 2023, Published online: 31 Jan 2023

References

  • Tseng L-F, Mather PT, Henderson JH. Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 2013;9(11):8790–8801.
  • Edgar L, McNamara K, Wong T, et al. Heterogeneity of scaffold biomaterials in tissue engineering. Mater. 2016;9(5):332.
  • Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Mater. 2019;12(4):568.
  • Zhang T, Gao Y, Cui W, et al. Nanomaterials-based cell osteogenic differentiation and bone regeneration. Curr Stem Cell Res Ther. 2021;16(1):36–47.
  • Fu Y, Cui S, Luo D, et al. Novel inorganic nanomaterial-based therapy for bone tissue regeneration. Nanomater. 2021;11(3):789.
  • Della Bella E, Buetti-Dinh A, Licandro G, et al. Dexamethasone induces changes in osteogenic differentiation of human mesenchymal stromal cells via SOX9 and PPARG, but not RUNX2. Int J Mol Sci. 2021;22(9):4785.
  • Mofarah M, Jafari-Gharabaghlou D, Dadashpour M, et al. Fabricating ZSM-5 Zeolite/polycaprolactone nano-fibers co-loaded with dexamethasone and ascorbic acid: potential application in osteogenic differentiation of human adipose-derived stem cells. J Drug Deliv Sci Technol. 2022;79:103999.
  • Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, et al. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother. 2017;90:85–92.
  • Gomes GJ, Costa MB, Bittencourt PR, et al. Catalytic improvement of biomass conversion: effect of adding mesoporosity on MOR Zeolite for esterification with oleic acid. Renewable Energy. 2021;178:1–12.
  • Rosenbach N, Jr, Mota CJ. Carbocation inside the cage: a periodical DFT study on the interaction of the C 4 H 7+ system with alkali metal ion-exchanged Zeolite Y. ARKIVOC: Online Journal of Organic Chemistry; 2020;2020(2):102–112.
  • Soldatov M, Liu H. Hybrid porous polymers based on cage-like organosiloxanes: synthesis, properties and applications. Prog Polym Sci. 2021;119:101419.
  • Matykiewicz D, Lewandowski K, Dudziec B. Evaluation of thermomechanical properties of epoxy–basalt fibre composites modified with Zeolite and silsesquioxane. Compos Interfaces. 2017;24(5):489–498.
  • Al-Ani A, Freitas C, Zholobenko V. Nanostructured large-pore Zeolite: the enhanced accessibility of active sites and its effect on the catalytic performance. Microporous Mesoporous Mater. 2020;293(109805)
  • Xu J, Wang Q, Deng F. Metal active sites and their catalytic functions in Zeolites: insights from solid-state NMR spectroscopy. Acc Chem Res. 2019;52(8):2179–2189.
  • Torres-Flores E, Flores-López N, Martínez-Núñez C, et al. Silver nanoparticles in natural Zeolites incorporated into commercial coating: antibacterial study. Appl Phys A. 2021;127(1):1–11.
  • Hao W, Zhang W, Guo Z, et al. Mesoporous beta Zeolite catalysts for benzylation of naphthalene: effect of pore structure and acidity. Catalysts. 2018;8(11):504.
  • Saito S, Wada H, Shimojima A, et al. Synthesis of zeolitic macrocycles using site-selective condensation of regioselectively difunctionalized cubic siloxanes. Inorg Chem. 2018;57(23):14686–14691.
  • Shimojima A, Kuroda K. Alkoxy- and silanol-functionalized cage-type oligosiloxanes as molecular building blocks to construct nanoporous materials. Molecules. 2020;25(3):524.
  • Sedghi R, Shaabani A, Sayyari N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr Polym. 2020;230:115707.
  • Wang D, Zhu P, Hu LJ. Study of POSS-modified ZMS exchanging ammonia-nitrogen in water with quantum chemistry program based on DFT. Adv Mater Res. 2011:183:800–804.
  • Kausar A. Nanocomposites of poly (ε-caprolactone) with nanocarbon and inorganic nanoparticles: a versatile platform for industrial applications. Mater Res Innovations. 2020;24(6):373–383.
  • Adala I, Ramis J, Moussinga CN, et al. Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. J Mater Chem B. 2021;9(20):4120–4133.
  • Fernández MD, Guzmán DJ, Ramos JR, et al. Effect of alkyl chain length in POSS nanocage on non-isothermal crystallization behavior of PCL/amino-POSS nanocomposites. Polymers. 2019;11(10):1719.
  • Blum C, Weichhold J, Hochleitner G, et al. Controlling Topography and Crystallinity of Melt Electrowritten Poly (ɛ-Caprolactone) Fibers. 3D Print Addit Manuf. 2021;8(15):315–321.
  • Zhang C, Zhang J, Xu T, et al. Effects of polyhedral oligomeric silsesquioxane (POSS) on thermal and mechanical properties of polysiloxane foam. Materials. 2020;13(20):4570.
  • Ayandele E, Sarkar B, Alexandridis P. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomater (Basel). 2012;2(4):445–475.
  • Li Y, Cai Y, Chen T, et al. Zeolites: a series of promising biomaterials in bone tissue engineering. Front Bioeng Biotechnol. 2022;10:1066552.
  • Lin C, Shen M, Chen W, et al. Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol. In Vitro Cell Dev Biol Anim. 2015;51(10):1102–1108.
  • Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19(1):1–19.
  • Kamei N, Nishimura H, Matsumoto A, et al. Comparative study of commercial protocols for high recovery of high-purity mesenchymal stem cell-derived extracellular vesicle isolation and their efficient labeling with fluorescent dyes. Nanomed. 2021;35:102396.
  • Li H, Huang H, Chen X, et al. The delivery of hsa-miR-11401 by extracellular vesicles can relieve doxorubicin-induced mesenchymal stem cell apoptosis. Stem cell Res Ther. 2021;12(1):1–13.
  • Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem. 2022;124(1):151841.
  • Dadashpour M, Pilehvar-Soltanahmadi Y, Mohammadi SA, et al. Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells. Artif Cells Nanomed Biotechnol. 2018;46(4):819–830.
  • McDonald MM, Kim AS, Mulholland BS, et al. New insights into osteoclast biology. JBMR Plus. 2021;5(9):e10539.
  • Chen Y, Zhao X, Wu HJA. Transcriptional programming in arteriosclerotic disease: a multifaceted function of the Runx2 (runt-related transcription factor 2). Arterioscler Thromb Vasc Biol. 2021;41(1):20–34.
  • Gelfman CM, Grishanin R, Bender KO, et al. Comprehensive preclinical assessment of ADVM-022, an intravitreal anti-VEGF gene therapy for the treatment of neovascular AMD and diabetic macular edema. J Ocul Pharmacol Ther. 2021;37(3):181–190.
  • Carpenter R, Brady MF. BAX gene. Treasure Island, FL: StatPearls Publishing; 2022.
  • Schrier MS, Zhang Y, Trivedi MS, et al. Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie. 2022;192:1–12.
  • Barzegari A, Omidi Y, Landon R, et al. The protective effect of N-acetylcysteine on antimycin A-induced respiratory chain deficiency in mesenchymal stem cells. Chem Biol Interact. 2022;360:109937.
  • Rodriguez-Ruiz V, Barzegari A, Zuluaga M, et al. Potential of aqueous extract of saffron (Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. J Funct Foods. 2016;26:123–134.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45.
  • Hejazian SM, Khatibi SMH, Barzegari A, et al. Nrf-2 as a therapeutic target in acute kidney injury. Life Sci. 2021;264:118581.
  • Hosseiniyan Khatibi SM, Kheyrolahzadeh K, Barzegari A, et al. Medicinal signaling cells: a potential antimicrobial drug store. J Cell Physiol. 2020;235(11):7731–7746.
  • Yadav LR, Chandran SV, Lavanya K, et al. Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol. 2021;183:1925–1938.
  • Aithal AP, Bairy LK, RNJSci S. Safety and therapeutic potential of human bone marrow-derived mesenchymal stromal cells in regenerative medicine. Stem cell investig. 2021;8:10.
  • Yao Y, Xu Y, Wang B, et al. Recent development in electrospun polymer fiber and their composites with shape memory property: a review. 2018;47(1):47–54.
  • Abazari MF, Hosseini Z, Karizi SZ, et al. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene. 2020;740:144534.
  • Rijal NP, Adhikari U, Khanal S, et al. Magnesium oxide-poly (ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater Sci Eng B. 2018;228:18–27.
  • van der Lubbe SC, Fonseca Guerra C. The nature of hydrogen bonds: a delineation of the role of different energy components on hydrogen bond strengths and lengths. Chem Asian J. 2019;14(16):2760–2769.
  • Jiao Y, Li J, Xie A, et al. Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos Sci Technol. 2019;174:232–240.
  • Dutta SD, Hexiu J, Patel DK, et al. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol. 2021;167:644–658.
  • Zhang R, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020;113:305–316.
  • Reid JA, Callanan A. Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering. J Biomed Mater Res B Appl Biomater. 2020;108(3):910–924.
  • Wang H, Wang E, Huang Y, et al. Hybrid hydrogel based on stereocomplex PDLA/PLLA and gelatin for bone regeneration. J Appl Polym Sci. 2020;137(48):49571.
  • Filipowska J, Lewandowska-Łańcucka J, Gilarska A, et al. In vitro osteogenic potential of collagen/chitosan-based hydrogels-silica particles hybrids in human bone marrow-derived mesenchymal stromal cell cultures. Int J Biol Macromol. 2018;113:692–700.
  • Liu F, Liu C, Zheng B, et al. Synergistic effects on incorporation of β-tricalcium phosphate and graphene oxide nanoparticles to silk fibroin/soy protein isolate scaffolds for bone tissue engineering. Polymers. 2020;12(1):69.
  • Amiryaghoubi N, Pesyan NN, Fathi M, et al. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int J Biol Macromol. 2020;162:1338–1357.
  • Mohammadi M, Alibolandi M, Abnous K, et al. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. Nanomed. 2018;14(7):1987–1997.
  • Qiu S, Fu H, Zhou R, et al. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. Ecotoxicol Environ Saf. 2020;187:109846.
  • Zhang Y, Zhang X, Yan Q, et al. Melatonin attenuates polystyrene microplastics induced motor neurodevelopmental defect in zebrafish (Danio rerio) by activating nrf2-isl2a axis. Ecotoxicol Environ Saf. 2022;241:113754.
  • Li B, Zhu X, Ward CM, et al. MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp Hematol. 2019;70:85–96.e5.
  • Prasad SR, Jayakrishnan A, Kumar TS. Hydroxyapatite-dextran methacrylate core/shell hybrid nanocarriers for combinatorial drug therapy. J Mater Res. 2020;35(18):2451–2465.
  • Gardouh AR, Attia MA, Enan ET, et al. Synthesis and antitumor activity of doxycycline polymeric nanoparticles: effect on tumor apoptosis in solid ehrlich carcinoma. Molecules. 2020;25(14):3230.
  • Sharma S, Pukale S, Sahel DK, et al. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Mater Sci Eng C Mater Biol Appl. 2021;128:112305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.