189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A polysaccharide/chitin hydrogel wound dressing from a Periplanattica americana residue: coagulation, antioxidant activity, and wound healing properties

, , , , , , & show all
Pages 1579-1602 | Received 08 Oct 2022, Accepted 17 Jan 2023, Published online: 25 Jan 2023

References

  • Zhao X, Liang YP, Huang Y, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater. 2020;30(17):1910748.
  • Hu S, Cai X, Qu X, et al. Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. Int J Biol Macromol. 2019;123:1320–1330.
  • Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229.
  • Littlejohn LF, Devlin JJ, Kircher SS, et al. Comparison of Celox-A, ChitoFlex, WoundStat, and combat gauze hemostatic agents versus standard gauze dressing in control of hemorrhage in a swine model of penetrating trauma. Acad Emerg Med. 2011;18(4):340–350.
  • Francesko A, Tzanov T. Chitin, chitosan and derivatives for wound healing and tissue engineering. Adv Biochem Eng Biotechnol. 2011;125:1–27.
  • Mohan K, Ganesan AR, Muralisankar T, et al. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci Technol. 2020;105:17–42.
  • Hu X, Du Y, Tang Y, et al. Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym. 2007;70(4):451–458.
  • Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: an updated review. Carbohydr Polym. 2022;283:119177.
  • Tang H, Zhang L, Hu L, et al. Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J Plant Growth Regul. 2014;33(2):195–201.
  • Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–575.
  • Singh R, Shitiz K, Singh A. Chitin and chitosan: biopolymers for wound management. Int Wound J. 2017;14(6):1276–1289.
  • Zeng C, Liao Q, Hu Y, et al. The role of Periplaneta americana (Blattodea: Blattidae) in modern versus traditional Chinese medicine. J Med Entomol. 2019;56(6):1522–1526.
  • Zhao Y, Yang A, Tu P, et al. Anti-tumor effects of the American cockroach, Periplaneta americana. Chin Med. 2017;12:26.
  • Las Heras K, Santos-Vizcaino E, Garrido T, et al. Soy protein and chitin sponge-like scaffolds: from natural by-products to cell delivery systems for biomedical applications. Green Chem. 2020;22(11):3445–3460.
  • Jang M-K, Kong B-G, Jeong Y-I, et al. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci A Polym Chem. 2004;42(14):3423–3432.
  • Fan Y, Saito T, Isogai A. Preparation of chitin nanofibers from squid pen β-Chitin by simple mechanical treatment under acid conditions. Biomacromolecules. 2008;9(7):1919–1923.
  • Cho YW, Jang J, Park CR, et al. Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules. 2000;1(4):609–614.
  • Cárdenas G, Cabrera G, Taboada E, et al. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J Appl Polym Sci. 2004;93(4):1876–1885.
  • Kaya M, Baran T. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). Int J Biol Macromol. 2015;75:7–12.
  • Rinaudo M, Milas M, Le Dung P. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol. 1993;15(5):281–285.
  • Kasaai M. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym. 2008;71(4):497–508.
  • Sajomsang W, Gonil P. Preparation and characterization of α-chitin from cicada sloughs. Mater Sci Eng C. 2010;30(3):357–363.
  • Nair A, Nair SC, Banerji A, et al. Development and evaluation of plumbagin loaded chitin hydrogel for the treatment of skin cancer. J Drug Delivery Sci Technol. 2021;66:102804.
  • Wang X, Yong H, Gao L, et al. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloid. 2019;89:56–66.
  • Feng C, Li J, Wu GS, et al. Chitosan-coated diatom silica as hemostatic agent for hemorrhage control. ACS Appl Mater Interfaces. 2016;8(50):34234–34243.
  • Leng F, Chen F, Jiang X. Modified porous carboxymethyl chitin microspheres by an organic solvent-free process for rapid hemostasis. Carbohydr Polym. 2021;270:118348.
  • Zhou R, Cui M, Wang Y, et al. Isolation, structure identification and anti-inflammatory activity of a polysaccharide from phragmites rhizoma. Int J Biol Macromol. 2020;161:810–817.
  • Huang Y, Shi F, Wang L, et al. Preparation and evaluation of Bletilla striata polysaccharide/carboxymethyl chitosan/carbomer 940 hydrogel for wound healing. Int J Biol Macromol. 2019;132:729–737.
  • Esposito L, Barbosa AI, Moniz T, et al. Design and characterization of sodium alginate and poly(vinyl) alcohol hydrogels for enhanced skin delivery of quercetin. Pharmaceutics. 2020;12(12):1149.
  • Bevalian P, Pashaei F, Akbari R, et al. Eradication of vancomycin-resistant Staphylococcus aureus on a mouse model of third-degree burn infection by melittin: an antimicrobial peptide from bee venom. Toxicon. 2021;199:49–59.
  • Yang X, Huang M, Qin C, et al. Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from qingzhuan brick tea. Int J Biol Macromol. 2017;101:768–775.
  • Khoo LT, Abas F, Abdullah JO, et al. Anticoagulant activity of polyphenolic-polysaccharides isolated from melastoma malabathricum L. Evid Based Complement Alternat Med. 2014;2014:614273.
  • Xu Y, Liu N, Fu X, et al. Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits. Int J Biol Macromol. 2019;132:109–118.
  • Qian JY, Chen W, Zhang WM, et al. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: a primary approach. Carbohydr Polym. 2009;78(3):620–625.
  • Liu H, Fan Y, Wang W, et al. Polysaccharides from Lycium barbarum leaves: isolation, characterization and splenocyte proliferation activity. Int J Biol Macromol. 2012;51(4):417–422.
  • Sabnis S, Block LH. Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polym Bull. 1997;39(1):67–71.
  • Wang Y, Chang Y, Yu L, et al. Crystalline structure and thermal property characterization of chitin from antarctic krill (euphausia superba). Carbohydr Polym. 2013;92(1):90–97.
  • Mohan K, Muralisankar T, Jayakumar R, et al. A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. Carbohydr Polym Technol Appl. 2021;2:100037.
  • Liu H, Wang C, Li C, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8(14):7533–7549.
  • Stefanov I, Hinojosa-Caballero D, Maspoch S, et al. Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. J Mater Chem B. 2018;6(47):7943–7953.
  • Si Trung T, Bao HND. Physicochemical Properties and antioxidant activity of chitin and chitosan prepared from pacific white shrimp waste. Int J Carbohydr Chem. 2015;2015:1–6.
  • Yang X, Liu W, Li N, et al. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci. 2017;5(12):2357–2368.
  • Ndlovu SP, Ngece K, Alven S, et al. Gelatin-based hybrid scaffolds: promising wound dressings. Polymers (Basel). 2021;13(17):2959.
  • Shinya S, Fukamizo T. Interaction between chitosan and its related enzymes: a review. Int J Biol Macromol. 2017;104(Pt B):1422–1435.
  • Jiang Q, Luo B, Wu Z, et al. Corn stalk/AgNPs modified chitin composite hemostatic sponge with high absorbency, rapid shape recovery and promoting wound healing ability. Chem Eng J. 2021;421:129815.
  • Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96.
  • Yasui K, Baba A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm Res. 2006;55(9):359–363.
  • Aliyev E, Sakallioğlu U, Eren Z, et al. The effect of polylactide membranes on the levels of reactive oxygen species in periodontal flaps during wound healing. Biomaterials. 2004;25(19):4633–4637.
  • Schafer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008;58(2):165–171.
  • Zhang M, Zhou J, Wang L, et al. Caffeic Acid reduces cutaneous tumor necrosis factor alpha (TNF-α), IL-6 and IL-1β levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biol Pharm Bull. 2014;37(3):347–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.