180
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cationic cellulose nanocrystals as sustainable green material for multi biological applications via ξ potential

ORCID Icon, &
Pages 1618-1642 | Received 06 Dec 2022, Accepted 27 Jan 2023, Published online: 20 Feb 2023

References

  • Shaoni S, Shaolong S, Xuefei C, et al. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016;199:49–58.
  • Seabra AB, Bernardes JS, Favaro WJ, et al. Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym. 2018;181:514–527.
  • Mishra RK, Sabu A, Tiwari SK. Materials chemistry and the futurist eco friendly applications of nanocellulose: status and prospect. Saudi Chem Soc. 2018;22(8):949–978.
  • Ali HT, Ezatollah A, Shokoofeh G, et al. Cellulose nanomaterials-binding properties and applications: a review. Molecules. 2018;23:2684.
  • Sjöström E. 2013. Wood chemistry: fundamentals and applications, 2nd ed. San Diego, CA: Academic Press.
  • Fontes A, Fernandes HP, de Thomaz AA, et al. 2007. Studying red blood cell agglutination by measuring electrical and mechanical properties with a double optical tweezers. In J. Popp and G. von Bally, editors. Biophotonics 2007: Optics in Life Science, Proceedings of SPIE-OSA Biomedical Optics, Vol. 6633. Washington: Optica Publishing Group.
  • Halib N, et al. Potential applications of nanocellulose-containing materials in the biomedical field. Materials (Basel). 2017;21;10(8):977.
  • De la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans. 2007;35(Pt 5):1156–1160.
  • Shimaa KA, Sara MM, Samar SE, et al. Phytochemical screening and characterization of the antioxidant, anti-proliferative and antibacterial effects of different extracts of Opuntia ficus-indica peel. J King Saud Univ Sci. 2022;34(7):102216.
  • Yosif A, et al. Development of nanocubosomes co-loaded with dual anticancer agents curcumin and temozolomide for effective colon cancer therapy. Drug Deliver. 2022;29(1):2633–2643.
  • Iqbal H, Razzaq A, Uzair B, et al. Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice. Materials. 2021;14(12):3155.
  • Bacakova L, Julia P, Maria T, et al. Applications of nanocellulose/nanocarbon composites: focus on biotechnology and medicine. Nanomaterials 2020;10(2):196. https://doi.org/10.3390/nano10020196
  • Rambabu N, Panthapulakkal S, Sain M, et al. Production of nanocellulose fibers from pine cone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Indus Crop Product. 2016;83:746–754.
  • Zhang B, Chongxing H, Hui Z, et al. Effects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites. Polymers Basel. 2019;11:2063.
  • Hesham M, Fawzy SM, Mahmoud M, et al. Production of zinc and copper as nanoparticles by green synthesis using Pseudomonas fluorescens. Pak J Biol Sci. 2021;24(4):445–453.
  • Ayache J, Beaunier L, Boumendil J, et al. 2010. Sample preparation handbook for transmission electron microscopy, 1st ed. New York: Springer-Verlag. 10.12691/ijp-4-5-3
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Liu K, Peng-Cheng L, Run L, et al. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res. 2015;21:15–20.
  • Mahmoud SM, Barakat OS, Kotram LE. Stimulation the immune response through ξ potential on core–shell ‘calcium oxide/magnetite iron oxides’ nanoparticles. Anim Biotechnol. 2022. DOI: 10.1080/10495398.2022.2111310
  • Repetto G, Peso A, Zurita J. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125–1131.
  • Ishaq L, Hillary M, Liang J, et al. Cellulose nanocrystals in cancer diagnostics and treatment. J Controlled Release. 2021;336:207–232.
  • Yedjou CG, Tchounwou PB. In-vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (comet) assays. Mol Cell Biochem. 2007;301(1-2):123–130.
  • Ioannou YA, Chen FW. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res. 1996;24(5):992–993.
  • Armonk. 2011. IBM SPSS statistics for windows, version 20.0. New York: IBM Corp.
  • Orasugh JT, Saha NR, Sarkar G, et al. A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int J Biol Macromol. 2018;109:1246–1252.
  • Rani K, Gomathi T, Vijayalakshmi K, et al. Banana fiber cellulose nano crystals grafted with butyl acrylate for heavy metal lead (II) removal. Int J Biol Macromol. 2019;131:461–472.
  • Pandi N, Shirish HS, Kishore KA. Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason Sonochem. 2021;70:105353.
  • Repetto G, Sanz P. Neutral red uptake, cellular growth and lysosomal function: in vitro effects of 24 metals. Altern Lab Anim. 1993;21(4):501–507.
  • Kaijanen L, Paakkunainen M, Pietarinen S, et al. Ultraviolet detection of monosaccharides: multiple wave-length strategy to evaluate results after capillary zoneelectrophoretic separation. Int J Electrochem Sci. 2015;10:2950–2961.
  • Bos A. The UV spectra of cellulose and some model compounds. J Appl Polym Sci. 1972;16(10):2567–2576.
  • Orelma H, Hokkanen A, Leppänen I, et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose. 2020;27(3):1543–1553.
  • Rowen JW, Hunt CM, Plyler EK. Absorption spectra in the detection of chemical changes in cellulose and cellulose derivatives. Textile Res J. 1947;17(9):504–511.
  • Afshari G, Ziyadi H. Preparation of cellulose nanoparticle from cinnamon. Nanoanalysis. 2018;5:84–90.
  • Xu R, Wu C, Xu H. Particle size and zeta potential of carbon black in liquid media. Carbon. 2007;45(14):2806–2809.
  • Kaushik M, Li AY, Hudson R, et al. Reversing aggregation: direct synthesis of nanocatalysts from bulk metal cellulose nanocrystals as active support to access efcient hydrogenation silver nanocatalysts. Green Chem. 2016;18(1):129–133.1281C
  • Tariq A, et al. Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ. 2021;29:2062–2071.
  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–3994.
  • Lavoine N, Desloges I, Dufresne A, et al. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012;90(2):735–764.
  • Juanjuan L, Ruitao C, Kaiwen M, et al. Nanocellulose-based antibacterial materials. Adv Healthcare Mater J. 2018;7(20): 1800334.
  • Abdul Khalil HP, Bhat AH, Ireana AF. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym. 2012;87(2):963–979.
  • Ibrahim K, Wageeh A, Alaitz E, et al. Nanoantioxidants: recent trends in antioxidant. Antioxidants (Basel). 2020;9(1):24. 10.3390/antiox9010024
  • Criado P, Carole F, Stephane S, et al. Evaluation of antioxidant cellulose nanocrystals and applications in gellan gum films. Indus Biotechnol. 2015;11(1):59–68.
  • Park PJ, Je JY, Kim SK. Free radical scavenging activity of hitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem. 2003;51(16):4624–4627.
  • Xie WM, Xu PX, Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett. 2001;11(13):1699–1701.
  • Sun T, Zhu Y, Xie J, et al. Antioxidant activity of N-acyl chitosan oligosaccharide with same substituting degree. Bioorg Med Chem Lett. 2011;21(2):798–800.
  • David P, Kevin L, John K, et al. A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp Pap Res J. 2014;29(1):105–118.
  • Syed B, Nagendra Prasad MN, Dhananjaya BL, et al. Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme Microb Technol. 2016;95:128–136.
  • Plackett D, Letchford K, Jackson J, et al. A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp Pap Res J. 2014;29(1):105–118.
  • Bideau B, Bras J, Saini S, et al. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Mater Sci Eng C Mater Biol Appl. 2016;69:977–984.
  • Ming L, Xiaohong L, Ning L, et al. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloid Surf A: Physicochem Eng Aspect. 2018;554:122–128.
  • Trache D, Ahmed FT, Mehdi D, et al. Nanocellulose: from fundamentals to advanced applications. Front Chem. 2020;8(392):392.
  • Chen S, Guo Y, Chen S, et al. Fabrication of Cu/TiO2 nanocomposite toward an enhanced antibacterial performance in the absence of light. Mater Lett. 2012;83:154–157.
  • Radovic-Moreno AF, Lu TK, Puscasu VA, et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–4287.
  • Zhang Y, Yang M, Portney NG, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 2008;10(2):321–328.
  • Roy D, Knapp JS, Guthrie JT, et al. Antibacterial cellulosefiber via RAFT surface graft polymerization. Biomacromolecules. 2008;9(1):91–99.
  • Saini S, Yücel F, Belgacem MN, et al. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces, carbohydr. Polym. 2016;136:239–247.
  • Dong S, Hirani AA, Colacino KR, et al. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE. 2012;02(03):1241006.
  • Male KB, Leung ACW, Montes J, et al. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale. 2012;4(4):1373–1379.
  • Hinderliter PM, Minard KR, Orr G, et al. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 2010;7(1):36.
  • Cho EC, Zhang Q, Xia YN. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol. 2011;6(6):385–391.
  • Sunasee R, Hemraz UD, Ckless K. Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications. Expert Opin Drug Deliv. 2016;13(9):1243–1256.
  • Empson YM, Emmanuel CE, Jung KH, et al. High elastic modulus nanoparticles: a novel tool for subfailure connective tissue matrix damage. Transl Res. 2014;164(3):244–257.
  • Sunasee R, Erinolaoluwa A, Dejhy P, et al. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1beta secretion associated with mitochondrial ROS production. Biochem Biophys Rep. 2015;4:1–9.
  • Thangavel M, Ganapathy R, Devendrapandi S, et al. Role of surface hydrophobicity of dicationic Amphiphile-Stabilized gold nanoparticles on A549 lung cancer cells. ACS Omega. 2017;2(7):3527–3538.
  • Sheikhi A, Joel H, James E, et al. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release. 2019;294:53–76.
  • Capadona JR, Shanmuganathan K, Tyler DJ, et al. Stimuliresponsive polymer nanocomposites inspired by the sea cucumber dermis. Science. 2008;319(5868):1370–1374.
  • Han X, Zicheng D, Yang Z, et al. Biomarkerless targeting and photothermal cancer cell killing by surface-electrically-charged superparamagnetic Fe3O4 composite nanoparticles. Nanoscale. 2017;9(4):1457–1465.
  • Chen B, Le W, Wang Y, et al. Targeting negative surface charges of cancer cells by multifunctional nanop-robes. Theranostics. 2016;6(11):1887–1898.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed. 2014;9(l):51–63.
  • Matta A, Kw S, Ralhan R. Zeta as novel molecular target for cancer therapy. Expert Opin Ther Target. 2012;16:14–13-3.
  • Talero R, Pedrajas C, Rahhal V. 2013. Performance of fresh Portland cement pastes-Determination of some specific rheological parameters. In: Durairaj R, editor. Rheology: new concepts, applications and methods, 1st ed. London: IntechOpen, 57–79. 10.5772/53761
  • Endes C, Camarero-Espinosa S, Mueller S, et al. A critical review of the current knowledge regarding the biological impact of nanocellulose. J Nanobiotechnol. 2016;14(1):78.
  • Hannukainen KS, Suhonen S, Savolainen K, et al. Genotoxicity of nanofibrillated cellulose in vitro as measured by enzyme comet assay. Toxicol Lett. 2012;211:s71. 10.1016/j.toxlet.2012.03.276
  • Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in the european prospective investigation into cancer and nutrition (EPIC): an observational study. The Lancet. 2003;361(9368):1496–1501. 10.1016/s0140-6736(03)13174-1
  • Masrul M, Nindrea D. Dietary fibre protective against colorectal cancer patients in asia: a meta-analysis. Open Access Maced J Med Sci. 2019;7(10):1723–1727.
  • Tchounwou CK, Yedjou CG, Farah I, et al. D-Glucose-Induced cytotoxic, genotoxic, and apoptotic effects on human breast adenocarcinoma (MCF-7) cells. J Cancer Sci Ther. 2014;6:156–160.
  • Ayat A, Elshamy LE, Kotram Olfat SB, et al. The effects of green synthesized anionic cupric oxide nanoparticles on zaraibi goat spermatozoa during cryopreservation with and without removal of seminal plasma. Anim Biotechnol. 2022. DOI: 10.1080/10495398.2022.2106992
  • Flávia DM, Cristina DV. 2013. Cellulose and its derivatives use in the pharmaceutical compounding practice. Cellulose - Medical, Pharmaceutical and Electronic Applications. DOI: 10.5772/56637
  • Trovatti E, Tang H, Hajian A, et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr Polym. 2018;181:256–263.
  • Shefa AA, Amirian J, Kang HJ, et al. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydr Polym. 2017;177:284–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.