275
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

3D collagen porous scaffold carrying PLGA-PTX/SDF-1α recruits and promotes neural stem cell differentiation for spinal cord injury repair

, , , , , , & show all
Pages 2332-2355 | Received 03 Apr 2023, Accepted 02 Aug 2023, Published online: 21 Aug 2023

References

  • Li C, Wu Z, Zhou L, et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct Target Ther. 2022;7(1):154. doi:10.1038/s41392-022-01012-z.
  • Yang Y, Fan Y, Zhang H, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Biomaterials. 2021;269:120479. doi:10.1016/j.biomaterials.2020.120479.
  • Leibinger M, Zeitler C, Gobrecht P, et al. Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun. 2021;12(1):391. doi:10.1038/s41467-020-20112-4.
  • Lu P, Kadoya K, Tuszynski MH. Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury. Curr Opin Neurobiol. 2014;27:103–109. doi:10.1016/j.conb.2014.03.010.
  • Mothe AJ, Tator CH. Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int J Dev Neurosci. 2013;31(7):701–713. doi:10.1016/j.ijdevneu.2013.07.004.
  • Zhou P, Guan J, Xu P, et al. Cell therapeutic strategies for spinal cord injury. Adv Wound Care (New Rochelle). 2019;8(11):585–605. doi:10.1089/wound.2019.1046.
  • Stenudd M, Sabelstrom H, Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72(2):235–237. doi:10.1001/jamaneurol.2014.2927.
  • Wang B, Xiao Z, Chen B, et al. Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS One. 2008;3(3):e1856. doi:10.1371/journal.pone.0001856.
  • Zheng Y, Mao YR, Yuan TF, et al. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res. 2020;15(8):1437–1450. doi:10.4103/1673-5374.274332.
  • Das RK, Zouani OF. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials. 2014;35(20):5278–5293. doi:10.1016/j.biomaterials.2014.03.044.
  • Li X, Fan C, Xiao Z, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through wnt/beta-catenin signaling for spinal cord injury repair. Biomaterials. 2018;183:114–127. doi:10.1016/j.biomaterials.2018.08.037.
  • Zhang L, Fan C, Hao W, et al. NSCs migration promoted and drug delivered Exosomes-Collagen scaffold via a Bio-Specific peptide for One-Step spinal cord injury repair. Adv Healthc Mater. 2021;10(8):e2001896. doi:10.1002/adhm.202001896.
  • Cui F, Li Y, Zhou S, et al. A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles. Nanoscale Res Lett. 2013;8(1):301. doi:10.1186/1556-276X-8-301.
  • Kim JJ, Yin B, Christudass CS, et al. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J Cell Biochem. 2013;114(6):1286–1293. doi:10.1002/jcb.24464.
  • Zhong Y, Su T, Shi Q, et al. Co-administration of iRGD enhances tumor-targeted delivery and anti-tumor effects of paclitaxel-loaded PLGA nanoparticles for colorectal cancer treatment. Int J Nanomedicine. 2019;14:8543–8560. doi:10.2147/IJN.S219820.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157. doi:10.1016/j.jconrel.2014.12.030.
  • Gong C, Xie Y, Wu Q, et al. Improving anti-tumor activity with polymeric micelles entrapping paclitaxel in pulmonary carcinoma. Nanoscale. 2012;4(19):6004–6017. doi:10.1039/c2nr31517c.
  • Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15(2):517–535. doi:10.7314/apjcp.2014.15.2.517.
  • Borselli C, Ungaro F, Oliviero O, et al. Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. J Biomed Mater Res A. 2010;92(1):94–102. doi:10.1002/jbm.a.32332.
  • Kapoor DN, Bhatia A, Kaur R, et al. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58. doi:10.4155/tde.14.91.
  • Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–231. doi:10.1016/j.colsurfb.2017.07.038.
  • Jimenez-Lopez J, El-Hammadi MM, Ortiz R, et al. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol Res. 2019;141:451–465. doi:10.1016/j.phrs.2019.01.013.
  • Gregoire CA, Goldenstein BL, Floriddia EM, et al. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia. 2015;63(8):1469–1482. doi:10.1002/glia.22851.
  • Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–18122. doi:10.1073/pnas.0408258102.
  • Fuhrmann T, Tam RY, Ballarin B, et al. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials. 2016;83:23–36. doi:10.1016/j.biomaterials.2015.12.032.
  • Zhang Y, Li Z, Wang Z, et al. Mechanically enhanced composite hydrogel scaffold for in situ bone repairs. Biomater Adv. 2022;134:112700. doi:10.1016/j.msec.2022.112700.
  • Zhou P, Xu P, Guan J, et al. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Colloids Surf B Biointerfaces. 2020;194:111214. doi:10.1016/j.colsurfb.2020.111214.
  • Li Z, Zhang Y, Zhao Y, et al. Graded-three-dimensional cell-encapsulating hydrogel as a potential biologic scaffold for disc tissue engineering. Tissue Eng Regen Med. 2022;19(5):1001–1012. doi:10.1007/s13770-022-00480-2.
  • Xie J, MacEwan MR, Liu W, et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces. 2014;6(12):9472–9480. doi:10.1021/am5018557.
  • Mao Y, Chen Y, Li W, et al. Physiology-Inspired multilayer nanofibrous membranes modulating endogenous stem cell recruitment and Osteo-Differentiation for staged bone regeneration. Adv Healthc Mater. 2022;11(21):e2201457. doi:10.1002/adhm.202201457.
  • Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J Biomed Mater Res A. 2019;107(9):1898–1908. doi:10.1002/jbm.a.36675.
  • Guan S, Zhang XL, Lin XM, et al. Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering. J Biomater Sci Polym Ed. 2013;24(8):999–1014. doi:10.1080/09205063.2012.731374.
  • Murphy AR, Laslett A, O’Brien CM, et al. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater. 2017;54:1–20. doi:10.1016/j.actbio.2017.02.046.
  • Wang CC, Yang KC, Lin KH, et al. Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold. Biomaterials. 2012;33(1):120–127. doi:10.1016/j.biomaterials.2011.09.042.
  • Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, et al. 177)Lu-Bombesin-PLGA (paclitaxel): a targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater Sci Eng C Mater Biol Appl. 2019;105:110043.(doi:10.1016/j.msec.2019.110043.
  • Khodaverdi S, Jafari A, Movahedzadeh F, et al. Evaluating inhibitory effects of paclitaxel and vitamin D3 loaded poly lactic glycolic acid Co-Delivery nanoparticles on the breast cancer cell line. Adv Pharm Bull. 2020;10(1):30–38. doi:10.15171/apb.2020.004.
  • Liu X, Mao Y, Huang S, et al. Selenium nanoparticles derived from Proteus mirabilis YC801 alleviate oxidative stress and inflammatory response to promote nerve repair in rats with spinal cord injury. Regen Biomater. 2022;9:rbac042. doi:10.1093/rb/rbac042.
  • Banstola A, Pham TT, Jeong JH, et al. Polydopamine-tailored paclitaxel-loaded polymeric microspheres with adhered NIR-controllable gold nanoparticles for chemo-phototherapy of pancreatic cancer. Drug Deliv. 2019;26(1):629–640. doi:10.1080/10717544.2019.1628118.
  • Rezazadeh M, Akbari V, Amuaghae E, et al. Preparation and characterization of an injectable thermosensitive hydrogel for simultaneous delivery of paclitaxel and doxorubicin. Res Pharma Sci. 2018;13(3):181–191. doi:10.4103/1735-5362.228918.
  • Wang GD, Liu YX, Wang X, et al. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells. Oncotarget. 2017;8(7):11629–11640. doi:10.18632/oncotarget.14619.
  • Chen Y, Yuan F, Lin J, et al. Curcumin promotes the proliferation, invasion of neural stem cells and formation of neurospheres via activating SDF-1/CXCR4 axis. Folia Neuropathol. 2021;59(2):152–160. doi:10.5114/fn.2021.107175.
  • Cheng M, Qin G. Progenitor cell mobilization and recruitment: SDF-1, CXCR4, alpha4-integrin, and c-kit. Prog Mol Biol Transl Sci. 2012;111:243–264. doi:10.1016/B978-0-12-398459-3.00011-3.
  • Zhang X, Xiong W, Kong G, et al. Paclitaxel-incorporated nanoparticles improve functional recovery after spinal cord injury. Front Pharmacol. 2022;13:957433. doi:10.3389/fphar.2022.957433.
  • Fan C, Li X, Zhao Y, et al. Cetuximab and taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci. 2018;6(7):1723–1734. doi:10.1039/c8bm00363g.
  • Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7(8):617–627. doi:10.1038/nrn1956.
  • Sharma K, Selzer ME, Li S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol. 2012;237(2):370–378. doi:10.1016/j.expneurol.2012.07.009.
  • Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?. Stem Cells. 2010;28(1):93–99. doi:10.1002/stem.253.
  • Liu Y, Tan B, Wang L, et al. Endogenous neural stem cells in Central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. Int J Clin Exp Pathol. 2015;8(4):3835–3842.
  • Liu S, Xie YY, Wang LD, et al. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res. 2021;16(11):2284–2292. doi:10.4103/1673-5374.310698.
  • Fan L, Liu C, Chen X, et al. Exosomes-Loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv Sci (Weinh). 2022;9(13):e2105586. doi:10.1002/advs.202105586.
  • Xie J, Li J, Ma J, et al. Magnesium oxide/poly(l-lactide-co-epsilon-caprolactone) scaffolds loaded with neural morphogens promote spinal cord repair through targeting the calcium influx and neuronal differentiation of neural stem cells. Adv Healthc Mater. 2022;11(15):e2200386.
  • Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92(3):245–276. doi:10.1016/j.pneurobio.2010.10.002.
  • Li X, Han J, Zhao Y, et al. Functionalized collagen scaffold neutralizing the Myelin-Inhibitory molecules promoted neurites outgrowth in vitro and facilitated spinal cord regeneration in vivo. ACS Appl Mater Interfaces. 2015;7(25):13960–13971. doi:10.1021/acsami.5b03879.
  • Li X, Han J, Zhao Y, et al. Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. Acta Biomater. 2016;30:233–245. doi:10.1016/j.actbio.2015.11.023.
  • Huang F, Chen T, Chang J, et al. A conductive dual-network hydrogel composed of oxidized dextran and hyaluronic-hydrazide as BDNF delivery systems for potential spinal cord injury repair. Int J Biol Macromol. 2021;167:434–445. doi:10.1016/j.ijbiomac.2020.11.206.
  • Yang Z, Zhang A, Duan H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2015;112(43):13354–13359. doi:10.1073/pnas.1510194112.
  • Fadera S, Cheng NC, Young TH, et al. In vitro study of SDF-1alpha-loaded injectable and thermally responsive hydrogels for adipose stem cell therapy by SDF-1/CXCR4 axis. J Mater Chem B. 2020;8(45):10360–10372. doi:10.1039/d0tb01961e.
  • Bukhari N, Torres L, Robinson JK, et al. Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system. J Neurosci. 2011;31(42):14931–14943. doi:10.1523/JNEUROSCI.3339-11.2011.
  • Lee H, McKeon RJ, Bellamkonda RV. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2010;107(8):3340–3345. doi:10.1073/pnas.0905437106.
  • Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636–640. doi:10.1038/416636a.
  • Barritt AW, Davies M, Marchand F, et al. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. 2006;26(42):10856–10867. doi:10.1523/JNEUROSCI.2980-06.2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.