595
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Malachite green-derivatized cationic comb-type copolymer acts as a photoresponsive artificial chaperone

, &
Pages 2463-2482 | Received 02 Dec 2022, Accepted 01 Sep 2023, Published online: 09 Oct 2023

References

  • Radford SE, Dobson CM. From computer simulations to human disease: emerging themes in protein folding. Cell. 1999;97(3):291–298. doi: 10.1016/s0092-8674(00)80739-4.
  • Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med. 2003;81(11):678–699. doi: 10.1007/s00109-003-0464-5.
  • Knowles T, Vendruscolo M, Dobson C. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15(6):384–396. doi: 10.1038/nrm3810.
  • Mayhew M, da Silva ACR, Martin J, et al. Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature. 1996;379(6564):420–426. doi: 10.1038/379420a0.
  • Hartl MH, Bracher A, Hartl FU. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci. 2016;41(1):62–76. doi: 10.1016/j.tibs.2015.07.009.
  • Akiyoshi K, Sasaki Y, Sunamoto J. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconjug Chem. 1999;10(3):321–324. doi: 10.1021/bc9801272.
  • Beierle JM, Yoshimatsu K, Chou B, et al. Polymer nanoparticle hydrogels with autonomous affinity switching for the protection of proteins from thermal stress. Angew Chem Int Ed Engl. 2014;53(35):9275–9279. doi: 10.1002/anie.201404881.
  • Liu X, Liu Y, Zhang Z, et al. Temperature-responsive mixed-shell polymeric micelles for the refolding of thermally denatured proteins. Chemistry. 2013;19(23):7437–7442. doi: 10.1002/chem.201300634.
  • Maruyama A, Katoh M, Ishihara T, et al. Comb-type polycations effectively stabilize DNA triplex. Bioconjug Chem. 1997;8(1):3–6. doi: 10.1021/bc960071g.
  • Maruyama A, Watanabe H, Ferdous A, et al. Characterization of interpolyelectrolyte complexes between double-stranded DNA and polylysine comb-type copolymers having hydrophilic side chains. Bioconjug Chem. 1998;9(2):292–299. doi: 10.1021/bc9701510.
  • Kim WJ, Sato Y, Akaike T, et al. Cationic comb-type copolymers for DNA analysis. Nat Mater. 2003;2(12):815–820. doi: 10.1038/nmat1021.
  • Kim WJ, Sato Y, Akaike T, et al. DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer. J Am Chem Soc. 2002;124(43):12676–12677. doi: 10.1021/ja0272080.
  • Shimada N, Saito K, Miyata T, et al. DNA computing boosted by a cationic copolymer. Adv Funct Mater. 2018;28:1707406.
  • Makita N, Inoue S, Akaike T, et al. Improved performance of a DNA nanomachine by cationic copolymers. Nucleic Acids Symp Ser. 2004;48(48):173–174. doi: 10.1093/nass/48.1.173.
  • Wang J, Shimada N, Maruyama A. Cationic copolymer-augmented DNA hybridization chain reaction. ACS Appl Mater Interfaces. 2022;14(34):39396–39403. doi: 10.1021/acsami.2c11548.
  • Gao J, Shimada N, Maruyama A. Enhancement of deoxyribozyme activity by cationic copolymers. Biomater Sci. 2015;3(2):308–316. doi: 10.1039/c4bm00256c.
  • Hanpanich O, Oyanagi T, Shimada N, et al. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials. 2019;225:119535. doi: 10.1016/j.biomaterials.2019.119535.
  • Rudeejaroonrung K, Hanpanich O, Saito K, et al. Cationic copolymer enhances 8–17 DNAzyme and MNAzyme activities. Biomater Sci. 2020;8(14):3812–3818. doi: 10.1039/d0bm00428f.
  • Hanpanich O, Saito K, Shimada N, et al. One-step isothermal RNA detection with LNA-modified MNAzymes chaperoned by cationic copolymer. Biosens Bioelectron. 2020;165:112383. doi: 10.1016/j.bios.2020.112383.
  • Takahashi S. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion. Biochemistry. 1990;29(26):6257–6264. doi: 10.1021/bi00478a021.
  • Murata M, Takahashi S, Shirai Y, et al. Specificity of amphiphilic anionic peptides for fusion of phospholipid vesicles. Biophys J. 1993;64(3):724–734. doi: 10.1016/S0006-3495(93)81432-2.
  • Shimada N, Kinoshita H, Tokunaga S, et al. Inter-polyelectrolyte nano-assembly induces folding and activation of functional peptides. J Control Release. 2015;218:45–52. doi: 10.1016/j.jconrel.2015.10.001.
  • Sakamoto W, Ochiai T, Shimada N, et al. Cationic copolymer augments membrane permeabilizing activity of an amphiphilic peptide. J Biomater Sci Polym Ed. 2017;28(10–12):1097–1108. doi: 10.1080/09205063.2017.1293483.
  • Shimada N, Kinoshita H, Umegae T, et al. Cationic copolymer-chaperoned 2D–3D reversible conversion of lipid membranes. Adv Mater. 2019;31(44):e1904032. doi: 10.1002/adma.201904032.
  • Bertelson RC. In: Brown GH, editor. Techniques of chemistry, III. New York (NY): Wiley-Interscience; 1971.
  • Kotharangannagari VK, Sànchez-Ferrer A, Ruokolainen J, et al. Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers. Macromolecules. 2011;44(12):4569–4573. doi: 10.1021/ma2008145.
  • Rahimi S, Stumpf S, Grimm O, et al. Dual photo- and pH-responsive spirooxazine-functionalized dextran nanoparticles. Biomacromolecules. 2020;21(9):3620–3630. doi: 10.1021/acs.biomac.0c00642.
  • Higuchi A, Hamamura A, Shindo Y, et al. Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules. 2004;5(5):1770–1774. doi: 10.1021/bm049737x.
  • He D, Arisaka Y, Masuda K, et al. A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer. Acta Biomater. 2017;51:101–111. doi: 10.1016/j.actbio.2017.01.049.
  • Xiao X, Hu J, Wang X, et al. A dual-functional supramolecular hydrogel based on a spiropyran–galactose conjugate for target-mediated and light-controlled delivery of microRNA into cells. Chem Commun. 2016;52(84):12517–12520. doi: 10.1039/c6cc07386g.
  • Hirakura T, Nomura Y, Aoyama Y, et al. Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules. 2004;5(5):1804–1809. doi: 10.1021/bm049860o.
  • Herz ML. Photochemical ionization of the triarylmethane leuconitriles. J Am Chem Soc. 1975;97(23):6777–6785. doi: 10.1021/ja00856a029.
  • Irie M, Kunwatchakun D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules. 1986;19(10):2476–2480. doi: 10.1021/ma00164a003.
  • Kito H, Suzuki F, Nagahara S, et al. A total delivery system of genetically engineered drugs or cells for diseased vessels. Asaio J. 1994;40(3):M260–M266. doi: 10.1097/00002480-199407000-00005.
  • Umeda M, Harada-Shiba M, Uchida K, et al. Photo-control of the polyplexes formation between DNA and photo-cation generatable water-soluble polymers. Curr Drug Deliv. 2005;2(3):207–214. doi: 10.2174/1567201054367986.
  • Uda RM, Ohshita M. Phototriggered DNA complexation and compaction using poly(vinyl alcohol) carrying a malachite green moiety. Bio Macromolecules. 2012;13(5):1510–1514. doi: 10.1021/bm3001952.
  • Uda RM, Matsui T. Photoinduced conformational changes in DNA by poly(vinyl alcohol) carrying a malachite green moiety for protecting DNA against attack by nuclease. Soft Matter. 2015;11(42):8246–8252. doi: 10.1039/c5sm01874a.
  • Uda RM, Nishimoto N, Matsui T, et al. Photoinduced binding of malachite green copolymer to parallel G-quadruplex DNA. Soft Matter. 2019;15(22):4454–4459. doi: 10.1039/c9sm00411d.
  • Oßwald S, Breimaier S, Linseis M, et al. Polyelectrochromic vinyl ruthenium-modified tritylium dyes. Organometallics. 2017;36(10):1993–2003. doi: 10.1021/acs.organomet.7b00194.
  • Tachikawa T, Handa C, Tokita S. Synthesis and radiation sensitivity of tris(4-N,N-dimethylainophenyl)methanethiol. J Photopol Sci Technol. 2003;16(2):187–190. doi: 10.2494/photopolymer.16.187.
  • Sakamoto W, Masuda T, Ochiai T, et al. Cationic copolymers act as chaperones of a membrane-active peptide: influence on membrane selectivity. ACS Biomater Sci Eng. 2019;5(11):5744–5751. doi: 10.1021/acsbiomaterials.8b01582.
  • Tsumoto K, Hayashi Y, Tabata J, et al. A reverse-phase method revisited: rapid high-yield preparation of giant unilamellar vesicles (GUVs) using emulsification followed by centrifugation. Colloid Surf A. 2018;546:74–82. doi: 10.1016/j.colsurfa.2018.02.060.
  • Culp SJ, Beland FA. Malachite green: a toxicological review. J Am Coll Toxicol. 1996;15(3):219–238. doi: 10.3109/10915819609008715.
  • Uda RM, Yoshida N, Iwasaki T, et al. pH-triggered solubility and cytotoxicity changes of malachite green derivatives incorporated in liposomes for killing cancer cells. J Mater Chem B. 2020;8(36):8242–8248. doi: 10.1039/d0tb01346c.
  • Jiang Y, Wan P, Xu H, et al. Facile reversible UV-controlled and fast transition from emulsion to gel by using a photoresponsive polymer with a malachite green group. Langmuir. 2009;25(17):10134–10138. doi: 10.1021/la900916m.
  • Hsu CH, Wu SH, Chang DK, et al. Structural characterizations of fusion − peptide analogs of influenza virus hemagglutinin: implication of the necessity of a helix-hinge-helix motif in fusion activity. J Biol Chem. 2002;277(25):22725–22733. doi: 10.1074/jbc.M200089200.
  • Masuda T, Takahashi S, Ochiai T, et al. Autonomous vesicle/sheet transformation of cell-sized lipid bilayers by hetero-grafted copolymers. ACS Appl Mater Interfaces. 2022;14(48):53558–53566. doi: 10.1021/acsami.2c17435.
  • Asanuma H, Liang X, Nishioka H, et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc. 2007;2(1):203–212. doi: 10.1038/nprot.2006.465.
  • Goldau T, Murayama K, Brieke C, et al. Azobenzene C-Nucleosides for photocontrolled hybridization of DNA at room temperature. Chemistry. 2015;21(49):17870–17876. doi: 10.1002/chem.201503303.
  • Babii O, Afonin S, Berditsch M, et al. Controlling biological activity with light: diarylethene-containing cyclic peptidomimetics. Angew Chem. 2014;126(13):3460–3463. doi: 10.1002/ange.201310019.
  • Kneuttinger AC, Winter M, Simeth NA, et al. Artificial light regulation of an allosteric bienzyme complex by a photosensitive ligand. Chembiochem. 2018;19(16):1750–1757. doi: 10.1002/cbic.201800219.
  • Ando H, Furuta T, Tsien RY, et al. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet. 2001;28(4):317–325. doi: 10.1038/ng583.
  • Karginov AV, Zou Y, Shirvanyants D, et al. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J Am Chem Soc. 2011;133(3):420–423. doi: 10.1021/ja109630v.