240
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a novel thermogelling PEC-based ECM mimicking nanocomposite bioink for bone tissue engineering

, & ORCID Icon
Pages 2516-2536 | Received 30 Dec 2022, Accepted 01 Sep 2023, Published online: 09 Oct 2023

References

  • Pilia M, Guda T, Appleford M. Development of composite scaffolds for load-bearing segmental bone defects. Biomed Res Int. 2013;2013:458253–458215. doi: 10.1155/2013/458253.
  • Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions. BMC Med. 2011; [cited 2022 Jan 6]9(1)[Internet]:66. Available at 10.1186/1741-7015-9-66.
  • Zaffe D. Some considerations on biomaterials and bone. Micron. 2005; [cited 2022 Jan 6]. 36(7-8)[Internet]:583–592. Available at https://pubmed.ncbi.nlm.nih.gov/16169740/. doi: 10.1016/j.micron.2005.05.008.
  • Bucciarelli A, Motta A. Use of Bombyx mori silk fibroin in tissue engineering: from cocoons to medical devices, challenges, and future perspectives. Biomater Adv. 2022;139:212982. doi: 10.1016/j.bioadv.2022.212982.
  • Hospodiuk M, Moncal KK, Dey M, et al. Extrusion-based biofabrication in tissue ­engineering and regenerative medicine. 3D Printing Biofabrication. 2016.
  • Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016;76:321–343. doi: 10.1016/j.biomaterials.2015.10.076.
  • Agarwal S, Saha S, Balla VK, et al. Current developments in 3D bioprinting for tissue and organ regeneration–a review. Front Mech Eng. 2020;6:90. doi: 10.3389/fmech.2020.589171.
  • Li N, Guo R, Zhang ZJ. Bioink formulations for bone tissue regeneration. Front Bioeng Biotechnol. 2021;9:630488. doi: 10.3389/fbioe.2021.630488.
  • Hahn L, Beudert M, Gutmann M, et al. From thermogelling hydrogels toward functional bioinks: controlled modification and cytocompatible crosslinking. Macromol Biosci. 2021;21:2100122.
  • Moncal KK, Gudapati H, Godzik KP, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction. Adv Funct Mater. 2021;31:2010858.
  • Wasupalli GK, Verma D. Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;107:110343. doi: 10.1016/j.msec.2019.110343.
  • Rajabi M, McConnell M, Cabral J, et al. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. doi: 10.1016/j.carbpol.2021.117768.
  • Ignatova MG, Manolova NE, Rashkov IB, et al. Poly(3-hydroxybutyrate)/caffeic acid electrospun fibrous materials coated with polyelectrolyte complex and their antibacterial activity and in vitro antitumor effect against HeLa cells. Mater Sci Eng C Mater Biol Appl. 2016;65:379–392. doi: 10.1016/j.msec.2016.04.060.
  • Loo Y, Lakshmanan A, Ni M, et al. Peptide bioink: self-Assembling nanofibrous scaffolds for Three-Dimensional organotypic cultures. Nano Lett. 2015; [cited 2022 Jan 8]15(10)[Internet]. :6919–6925. Available at doi: 10.1021/acs.nanolett.5b02859.
  • Narayanan LK, Huebner P, Fisher MB, et al. 3D-Bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human Adipose-Derived stem cells. ACS Biomater Sci Eng. 2016; [cited 2022 Jan 8] 2(10)[Internet]:1732–1742. Available at doi: 10.1021/acsbiomaterials.6b00196.
  • Sakai S, Yoshii A, Sakurai S, et al. Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Mater Today Bio. 2020;8:100078. doi: 10.1016/j.mtbio.2020.100078.
  • Lee DY, Lee H, Kim Y, et al. Phage as versatile nanoink for printing 3-D cell-laden scaffolds. Acta Biomater. 2016;29:112–124. doi: 10.1016/j.actbio.2015.10.004.
  • Sun Y, Li X, Zhao M, et al. Bioinspired supramolecular nanofiber hydrogel through self-assembly of biphenyl-tripeptide for tissue engineering. Bioact Mater. 2022;8:396–408. doi: 10.1016/j.bioactmat.2021.05.054.
  • Song T, Zhou J, Shi M, et al. Osteon-mimetic 3D nanofibrous scaffold enhancing stem cell proliferation and osteogenic differentiation for bone regeneration. Biomater Sci. 2022; [cited 2022 Jan 8] 10; (4):1090–1103. Available at https://pubs.rsc.org/en/content/articlehtml/2022/bm/d1bm01489g. doi: 10.1039/d1bm01489g.
  • Hu J-J, Tarafder S, Bikiaris D, et al. Fibrous polymer-based composites obtained by electrospinning for bone tissue engineering. Polymers. 2022; [cited 2022 Jan 8]14[Internet]:96. Available at https://www.mdpi.com/2073-4360/14/1/96/htm.
  • Liu X, Smith L, Wei G, et al. Surface engineering of nano-fibrous poly(L-lactic acid) scaffolds via self-assembly technique for bone tissue engineering. J Biomed Nanotechnol. 2005;1(1):54–60. doi: 10.1166/jbn.2005.013.
  • Zheng W, Zhang W, Jiang X. Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater. 2010; [cited 2022 Jan 8] 12(9)[Internet]:B451–B466. Available at doi: 10.1002/adem.200980087.
  • Choi C, Nam JP, Nah JW. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10. doi: 10.1016/j.jiec.2015.10.028.
  • Yim EKF, Liao IC, Leong KW. Tissue compatibility of interfacial polyelectrolyte complexation fibrous scaffold: evaluation of blood compatibility and biocompatibility. Tissue Engineering 2007;13(2):423–433. Available at 10.1089/ten.2006.0113.
  • Therriault D, White SR, Lewis JA. Rheological behavior of fugitive organic inks for direct-write assembly. Applied Rheology. 2007;17(1):10112–1–10112-8. doi: 10.1515/arh-2007-0001.
  • Ribeiro A, Blokzijl MM, Levato R, et al. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication 2017;10(1):014102. doi: 10.1088/1758-5090/aa90e2.
  • Habib A, Sathish V, Mallik S, et al. 3D printability of Alginate-Carboxymethyl cellulose hydrogel. Materials 2018;11(3):454. doi: 10.3390/ma11030454.
  • Paxton N, Smolan W, Böck T, et al. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):44107. doi: 10.1088/1758-5090/aa8dd8.
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52. doi: 10.1016/s0939-6411(03)00160-7.
  • Jarry C, Leroux JC, Haeck J, et al. Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-beta-glycerophosphate systems. Chem Pharm Bull (Tokyo). 2002; [cited 2022 Jan 8]50(10)[Internet]:1335–1340. Available at https://pubmed.ncbi.nlm.nih.gov/12372859/. doi: 10.1248/cpb.50.1335.
  • Lin YC, Tan F J, Marra KG, et al. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater. 2009;5(7):2591–2600. doi: 10.1016/j.actbio.2009.03.038.
  • Akay G, Birch MA, Bokhari MA. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials 2004;25(18):3991–4000. doi: 10.1016/j.biomaterials.2003.10.086.
  • Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polym Ed. 2004;15(1):41–57. doi: 10.1163/156856204322752228.
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004; [cited 2023 May 29] 32(3)[Internet]:477–486. Available at https://pubmed.ncbi.nlm.nih.gov/15095822/.
  • Van Vlierberghe S, Graulus GJ, Samal SK, et al. Porous hydrogel biomedical foam scaffolds for tissue repair. Biomed Foams Tissue Eng Appl. 2014:335–390.
  • Mahboudi S, Pezeshki-Modaress M, Noghabi KA. The study of fibroblast cell growth on the porous scaffold of gelatin–starch blend using the salt-leaching and lyophilization method. International Journal of Polymeric Materials and Polymeric Biomaterials 2015;64:653–659. doi: 10.1080/0091403720141002095.
  • Jaiswal M, Koul V, Dinda AK, et al. Cell adhesion and proliferation studies on semi-interpenetrating polymeric networks (semi-IPNs) of polyacrylamide and gelatin. J Biomed Mater Res B Appl Biomater. 2011;98(2):342–350. doi: 10.1002/jbm.b.31857.
  • Bajpai AK, Sharma M. Preparation and characterization of binary grafted polymeric blends of polyvinyl alcohol and gelatin and evaluation of their water uptake potential. J Macromol Sci Pure Appl Chem. 2005;42(5):663–682. doi: 10.1081/MA-200056403.
  • Tomić SL, Mićić MM, Dobić SN, et al. Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem. 2010;79(5):643–649. doi: 10.1016/j.radphyschem.2009.11.015.
  • Qiao C, Ma X, Zhang J, et al. Molecular interactions in gelatin/chitosan composite films. Food Chem. 2017;235:45–50. doi: 10.1016/j.foodchem.2017.05.045.
  • Li C, Mu C, Lin W, et al. Gelatin effects on the physicochemical and hemocompatible properties of gelatin/PAAm/laponite nanocomposite hydrogels. ACS Appl Mater Interfaces. 2015;7(33):18732–18741. doi: 10.1021/acsami.5b05287.
  • Lončarević A, Ivanković M, Rogina A. Lysozyme-Induced degradation of chitosan: the characterisation of degraded chitosan scaffolds. JTRR. 2017; [cited 2023 May 29]1(1)[Internet]:12–22. Available at https://openaccesspub.org/tissue-repair-and-regeneration/article/657. doi: 10.14302/issn.2640-6403.jtrr-17-1840.
  • Guccini V, Phiri J, Trifol J, et al. Tuning the porosity, water interaction, and redispersion of nanocellulose hydrogels by osmotic dehydration. ACS Appl Polym Mater. 2022;4(1):24–28. doi: 10.1021/acsapm.1c01430.
  • Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013; [cited 2023 May 29]25(36)[Internet]:5011–5028. Available at https://pubmed.ncbi.nlm.nih.gov/24038336/.
  • Paul A, Manoharan V, Krafft D, et al. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B. 2016;4(20):3544–3554. doi: 10.1039/C5TB02745D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.