214
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Application of graphene oxide in tumor targeting and tumor therapy

, , & ORCID Icon
Pages 2551-2576 | Received 04 Aug 2023, Accepted 09 Sep 2023, Published online: 09 Oct 2023

References

  • Nistor C-E, et al. Clavicular malignancies: a borderline surgical management. Medicina-Lithuania. 2022;58(7)
  • Harper E, Talbot CJ. Is it time to change radiotherapy: the dawning of chronoradiotherapy? Clinical Oncology. 2019;31(5):326–335. doi: 10.1016/j.clon.2019.02.010.
  • Shen J, Sun C, Liu Q, et al. Nano drug delivery systems: effective therapy strategies to overcome multidrug resistance in tumor cells. ChemistrySelect. 2022;7(1). doi: 10.1002/slct.202104321.
  • Shakeran Z, Varshosaz J, Keyhanfar M, et al. Co-delivery of STAT3 siRNA and methotrexate in breast cancer cells. Artif Cells Nanomed Biotechnol. 2022;50(1):29–39. doi: 10.1080/21691401.2022.2030746.
  • Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, et al. Nanomaterials for deep tumor treatment. Mini Rev Med Chem. 2021;21(6):677–688. doi: 10.2174/1389557520666201111161705.
  • Sun H, Mukherjee S, Daly M, et al. New insights into the structure-nonlinear mechanical property relations for graphene allotropes. Carbon. 2016;110:443–457. doi: 10.1016/j.carbon.2016.09.018.
  • Chen K, Ling Y, Cao C, et al. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Mater Sci Eng C Mater Biol Appl. 2016;69:1222–1228. doi: 10.1016/j.msec.2016.08.036.
  • Vinothini K, Rajendran NK, Munusamy MA, et al. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded kappa-carrageenan grafted graphene oxide nanocarrier. Mater Sci Eng C Mater Biol Appl. 2019;100:676–687. doi: 10.1016/j.msec.2019.03.011.
  • Riahi KZ, Sdiri N, Ennigrou DJ, et al. Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthetized from modified hummer’s method. J Mol Struct. 2020;1216:128304. doi: 10.1016/j.molstruc.2020.128304.
  • Glass DE, Galvan V, Prakash GKS. Reassessing the necessity of the drying step in hummer’s method for graphene oxide synthesis. Electroanalysis. 2021;33(11):2323–2334. doi: 10.1002/elan.202100188.
  • Liu B, Xie J, Ma H, et al. From graphite to graphene oxide and graphene oxide quantum dots. Small. 2017;13(18):CP16–U22. doi: 10.1002/smll.201601001.
  • Zhang Z, Xiao X, Zhou Y, et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration. ACS Nano. 2021;15(8):13178–13187. doi: 10.1021/acsnano.1c02719.
  • Yi W, Ji C, Fei J, et al. Reversible switched pH-responsive hydroquinone electrochemical sensor based on composite film of polystyrene-b-Poly (acrylic acid) and graphene oxide. Electroanalysis. 2018;30(12):2888–2898. doi: 10.1002/elan.201800600.
  • Song F, Hu W, Xiao L, et al. Enzymatically cross-linked hyaluronic acid/graphene oxide nanocomposite hydrogel with pH-responsive release. J Biomater Sci Polym Ed. 2015;26(6):339–352. doi: 10.1080/09205063.2015.1007413.
  • Hao X, Yang J, Zhang L, et al. pH-responsive d-leucine functional multilayer films with antibacterial and anti-adhesion synergistic properties. Mater Today Commun. 2021;28:102691. doi: 10.1016/j.mtcomm.2021.102691.
  • Han C, et al. Cytochrome c light-up graphene oxide nanosensor for the targeted self-monitoring of mitochondria-mediated tumor cell death. Biosens Bioelect. 2021;173.
  • Jannesari M, Akhavan O, Madaah Hosseini HR, et al. Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl Mater Interf. 2020;12(32):35813–35825. doi: 10.1021/acsami.0c05732.
  • Liu X, Yan B, Li Y, et al. Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-rebated immune response for enhanced antitumor efficacy. ACS Nano. 2020;14(2):1936–1950. doi: 10.1021/acsnano.9b08320.
  • Shi D, Zhuang J, Fan Z, et al. Self-targeting nanotherapy based on functionalized graphene oxide for synergistic thermochemotherapy. J Colloid Interf Sci. 2021;603:70–84. doi: 10.1016/j.jcis.2021.06.072.
  • Zeng W-N, Yu Q-P, Wang D, et al. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotech. 2021;19(1):79. doi: 10.1186/s12951-021-00831-6.
  • de Lázaro I, Vranic S, Marson D, et al. Graphene oxide as a 2D platform for complexation and intracellular delivery of siRNA. Nanoscale. 2019;11(29):13863–13877. doi: 10.1039/C9NR02301A.
  • Gao J, Wang S, Tang G, et al. Altered immune cells in the liver and spleen of mice as a typical immune response to graphene oxide exposure. Mater Design. 2021;206:109802. doi: 10.1016/j.matdes.2021.109802.
  • Li Y, Yang Y, Shao Y, et al. Chitosan functionalized graphene oxide nanocomposites for fluorescence imaging of apoptotic processes and targeted anti-inflammation study. Carbohydr Polym. 2021;269:118345. doi: 10.1016/j.carbpol.2021.118345.
  • Isiklan N, Hussien NA, Turk M. Synthesis and drug delivery performance of gelatin-decorated magnetic graphene oxide nanoplatform. Colloids Surf a-Physicochem Eng Aspects. 2021;616.
  • Chen H, Xing L, Guo H, et al. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy. Analyst. 2021;146(22):6893–6901. doi: 10.1039/d1an01237a.
  • Naumov A, Grote F, Overgaard M, et al. Graphene oxide: a one- versus two-component material. J Am Chem Soc. 2016;138(36):11445–11448. doi: 10.1021/jacs.6b05928.
  • Hu YANG, Li Z, Li H, et al. Synthesis of graphene oxide using mildly oxidized graphite through ultrasonic exfoliation. Surf Rev Lett. 2017;24(06):1750087. doi: 10.1142/S0218625X17500871.
  • Costa MCF, Marangoni VS, Ng PR, et al. Accelerated synthesis of graphene oxide from graphene. Nanomater. 2021;11(2):551. doi: 10.3390/nano11020551.
  • Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C. 2011;115(34):17206–17212. doi: 10.1021/jp204036a.
  • Sharma B, Shekhar S, Malik P, et al. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets. Mater Res Express. 2018;5(6):065012. doi: 10.1088/2053-1591/aac650.
  • Bouša D, Luxa J, Mazánek V, et al. Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Adv. 2016;6(71):66884–66892. doi: 10.1039/C6RA14845J.
  • Lee JU, Lee W, Yi JW, et al. Preparation of highly stacked graphene papers via site-selective functionalization of graphene oxide. J Mater Chem A. 2013;1(41):12893–12899. doi: 10.1039/c3ta11717k.
  • Oz Y, Barras A, Sanyal R, et al. Functionalization of reduced graphene oxide via thiol-maleimide "click" chemistry: facile fabrication of targeted drug delivery vehicles. ACS Appl Mater Interf. 2017;9(39):34194–34203. doi: 10.1021/acsami.7b08433.
  • Bidram E, Sulistio A, Cho H-J, et al. Targeted graphene oxide networks: cytotoxicity and synergy with anticancer agents. ACS Appl Mater Interf. 2018;10(50):43523–43532. doi: 10.1021/acsami.8b17531.
  • Ma N, Liu J, He W, et al. Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J Colloid Interf Sci. 2017;490:598–607. doi: 10.1016/j.jcis.2016.11.097.
  • Fan L, Ge H, Zou S, et al. Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int J Biol Macromol. 2016;93(Pt A):582–590. doi: 10.1016/j.ijbiomac.2016.09.026.
  • Qu Y, Sun F, He F, et al. Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy. Eur J Pharm Sci. 2019;139:105036. doi: 10.1016/j.ejps.2019.105036.
  • Ou L, Sun T, Liu M, et al. Efficient miRNA inhibitor delivery with graphene oxide-polyethylenimine to inhibit oral squamous cell carcinoma. Int J Nanomed. 2020;15:1569–1583. doi: 10.2147/IJN.S220057.
  • Li J, Huang X, Huang R, et al. Erythrocyte membrane camouflaged graphene oxide for tumor-targeted photothermal-chemotherapy. Carbon. 2019;146:660–670. doi: 10.1016/j.carbon.2019.02.056.
  • Zhang C, Liu Z, Zheng Y, et al. Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo. Small. 2018;14(4). doi: 10.1002/smll.201703306.
  • Li R, Wang Y, Du J, et al. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci Rep. 2021;11(1):1725. doi: 10.1038/s41598-021-81218-3.
  • Martín C, Ruiz A, Keshavan S, et al. A biodegradable multifunctional graphene oxide platform for targeted cancer therapy. Adv Funct Mater. 2019;29(39). doi: 10.1002/adfm.201901761.
  • Liu L, Ma Q, Cao J, et al. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nano. 2021;12(1). doi: 10.1186/s12645-021-00087-7.
  • Zhou B, Huang Y, Yang F, et al. Dual-functional nanographene oxide as cancer-targeted drug-delivery system to selectively induce cancer-cell apoptosis. Chem Asian J. 2016;11(7):1008–1019. doi: 10.1002/asia.201501277.
  • Shim G, Miao W, Ko S, et al. Immune-camouflaged graphene oxide nanosheets for negative regulation of phagocytosis by macrophages. J Mater Chem B. 2017;5(32):6666–6675. doi: 10.1039/c7tb00648a.
  • Tang Y, Hu H, Zhang MG, et al. An aptamer-targeting photoresponsive drug delivery system using "off-on" graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale. 2015;7(14):6304–6310. doi: 10.1039/c4nr07493a.
  • Bugárová N, Špitálsky Z, Mičušík M, et al. A multifunctional graphene oxide platform for targeting cancer. Cancers. 2019;11(6):753. doi: 10.3390/cancers11060753.
  • Suryaprakash S, Li M, Lao Y-H, et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon. 2018;129:863–868. doi: 10.1016/j.carbon.2017.12.031.
  • Li R, et al. Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics. Chem Eng J. 2020;382.
  • Farooq MA, Aquib M, Ghayas S, et al. Whey protein: a functional and promising material for drug delivery systems recent developments and future prospects. Polym Adv Techs. 2019;30(9):2183–2191. doi: 10.1002/pat.4676.
  • Fathi M, Donsi F, McClements DJ. Protein-based delivery systems for the nanoencapsulation of food ingredients. Compr Rev Food Sci Food Saf. 2018;17(4):920–936. doi: 10.1111/1541-4337.12360.
  • Iqbal H, Yang T, Li T, et al. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release. 2021;329:997–1022. doi: 10.1016/j.jconrel.2020.10.030.
  • Chen J, Guan X, Hu Y, et al. Peptide-based and polypeptide-based gene delivery systems. Top Curr Chem (Z). 2017;375(2). doi: 10.1007/s41061-017-0115-x.
  • Chen Y, Pang X-H, Dong C-M. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater. 2010;20(4):579–586. doi: 10.1002/adfm.200901400.
  • Wang X, Song Z, Wei S, et al. Polypeptide-based drug delivery systems for programmed release. Biomaterials. 2021;275:120913. doi: 10.1016/j.biomaterials.2021.120913.
  • Zhao L, Li N, Wang K, et al. A review of polypeptide-based polymersomes. Biomaterials. 2014;35(4):1284–1301. doi: 10.1016/j.biomaterials.2013.10.063.
  • Wang Y, Wan G, Li Z, et al. PEGylated doxorubicin nanoparticles mediated by HN-1 peptide for targeted treatment of oral squamous cell carcinoma. Int J Pharm. 2017;525(1):21–31. doi: 10.1016/j.ijpharm.2017.04.027.
  • Wan Y, Dai W, Nevagi RJ, et al. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater. 2017;59:257–268. doi: 10.1016/j.actbio.2017.06.032.
  • Anton P, O'Connell J, O'Connell D, et al. Mucosal subepithelial binding sites for the bacterial chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP). Gut. 1998;42(3):374–379. doi: 10.1136/gut.42.3.374.
  • Tokay E. Epidermal growth factor mediates up-regulation of URGCP oncogene in human hepatoma cancer cells. Mol Biol. 2021;55(4):618–623. doi: 10.1134/S0026893321030134.
  • Kakei Y, Teraoka S, Akashi M, et al. Changes in cell junctions induced by inhibition of epidermal growth factor receptor in oral squamous cell carcinoma cells. Exp Ther Med. 2017;14(2):953–960. doi: 10.3892/etm.2017.4606.
  • Hung M-S, Chen I-C, Lung J-H, et al. Epidermal growth factor receptor mutation enhances expression of cadherin-5 in lung cancer cells. PLoS One. 2016;11(6):e0158395. doi: 10.1371/journal.pone.0158395.
  • Yin W, Zhang K, Deng Q, et al. AZD3759 inhibits glioma through the blockade of the epidermal growth factor receptor and Janus kinase pathways. Bioengineered. 2021;12(1):8679–8689. doi: 10.1080/21655979.2021.1991160.
  • González-González L, González-Ramírez R, Flores A, et al. Epidermal growth factor potentiates migration of MDA-MB 231 breast cancer cells by increasing Na(V)1.5 channel expression. Oncology. 2019;97(6):373–382. doi: 10.1159/000501802.
  • Mallmann-Gottschalk N, Sax Y, Kimmig R, et al. EGFR-specific tyrosine kinase inhibitor modifies NK cell-mediated antitumoral activity against ovarian cancer cells. Int J Mol Sci. 2019;20(19):4693. doi: 10.3390/ijms20194693.
  • Gomez KE, Wu F, Keysar SB, et al. Cancer cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells. Cancer Res. 2020;80(19):4185–4198. doi: 10.1158/0008-5472.CAN-20-1079.
  • de la Rosa JMR, et al. The CD44-mediated uptake of hyaluronic acid-based carriers in macrophages. Adv Healthcare Mater. 2017;6(4).
  • Dana PM, et al. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol. 2022;924.
  • Lu X, Liu J, Wu X, et al. Multifunctional DNA origami nanoplatforms for drug delivery. Chem Asian J. 2019;14(13):2193–2202. doi: 10.1002/asia.201900574.
  • Udomprasert A, Kangsamaksin T. DNA origami applications in cancer therapy. Cancer Sci. 2017;108(8):1535–1543. doi: 10.1111/cas.13290.
  • Pal S, Rakshit T. Folate-functionalized DNA origami for targeted delivery of doxorubicin to triple-negative breast cancer. Front Chem. 2021;9:721105. doi: 10.3389/fchem.2021.721105.
  • Zhang H, Qu X, Chen H, et al. Fabrication of calcium phosphate-based nanocomposites incorporating DNA origami, gold nanorods, and anticancer drugs for biomedical applications. Adv Healthc Mater. 2017;6(20):1700664. doi: 10.1002/adhm.201700664.
  • Wu T, Liu J, Liu M, et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery. Angew Chem Int Ed Engl. 2019;58(40):14224–14228. doi: 10.1002/anie.201909345.
  • Cao M, Sun Y, Xiao M, et al. Multivalent aptamer-modified DNA origami as drug delivery system for targeted cancer therapy. Chem Res Chin Univ. 2020;36(2):254–260. doi: 10.1007/s40242-019-9273-4.
  • Baneshi M, Dadfarnia S, Haji Shabani AM, et al. AS1411 aptamer-functionalized graphene oxide-based nano-carrier for active-target and pH-sensitive delivery of curcumin. J Iran Chem Soc. 2022;19(6):2367–2376. doi: 10.1007/s13738-021-02455-x.
  • Koruza K, Murray AB, Mahon BP, et al. Biophysical characterization of cancer-related carbonic anhydrase IX. Int J Mol Sci. 2020;21(15):5277. doi: 10.3390/ijms21155277.
  • Courcier J, de la Taille A, Nourieh M, et al. Carbonic anhydrase IX in renal cell carcinoma, implications for disease management. Int J Mol Sci. 2020;21(19):7146. doi: 10.3390/ijms21197146.
  • Stillebroer AB, Mulders PFA, Boerman OC, et al. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol. 2010;58(1):75–83. doi: 10.1016/j.eururo.2010.03.015.
  • Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano. 2016;10(11):10049–10057. doi: 10.1021/acsnano.6b04695.
  • Tan Y-N, Huang J-D, Li Y-P, et al. Near-Infrared responsive membrane nanovesicles amplify homologous targeting delivery of anti-PD immunotherapy against metastatic tumors. Adv Healthc Mater. 2022;11(6):e2101496. doi: 10.1002/adhm.202101496.
  • Wang J, Sun L, Liu J, et al. Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. J Nanobiotechnol. 2021;19(1) doi: 10.1186/s12951-021-01096-9.
  • Wu M, Mei T, Lin C, et al. Melanoma cell membrane biomimetic versatile CuS nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy. ACS Appl Mater Interf. 2020;12(14):16031–16039. doi: 10.1021/acsami.9b23177.
  • Montazersaheb S, Fathi E, Mamandi A, et al. Mesenchymal stem cells and cancer steam cells: an overview of tumor-mesenchymal stem cell interaction for therapeutic interventions. Curr Drug Targets. 2022;23(1):60–71. doi: 10.2174/1389450122666210824142247.
  • Zhang L, Xu H, Cheng Z, et al. Human cancer cell membrane-cloaked Fe3O4 nanocubes for homologous targeting improvement. J Phys Chem B. 2021;125(27):7417–7426. doi: 10.1021/acs.jpcb.1c04383.
  • Li J, Zhang W, Ji W, et al. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J Mater Chem B. 2021;9(38):7909–7926. doi: 10.1039/d1tb01310f.
  • Bian W, Pan Z, Wang Y, et al. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors. Bioorg Chem. 2021;113:104954. doi: 10.1016/j.bioorg.2021.104954.
  • Wei C, Jin X, Wu C, et al. Carbon spheres with high photothermal conversion efficiency for photothermal therapy of tumor. Diamond Relat Mater. 2022;126:109048. doi: 10.1016/j.diamond.2022.109048.
  • Xu Z, Wu S, Huang G, et al. Aptamer-modified CuS nanocrystals/graphene oxide composites for controlled release of glucosamine and chemo-photothermal therapy of tumor cells. Mater Lett. 2017;195:131–135. doi: 10.1016/j.matlet.2017.02.119.
  • Fiorica C, Mauro N, Pitarresi G, et al. Double-network-structured graphene oxide-containing nanogels as photothermal agents for the treatment of colorectal cancer. Biomacromolecules. 2017;18(3):1010–1018. doi: 10.1021/acs.biomac.6b01897.
  • Khezri B, Beladi Mousavi SM, Krejčová L, et al. Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv Funct Mater. 2019;29(4). doi: 10.1002/adfm.201806696.
  • Ma N, Song A, Li Z, et al. Redox-sensitive prodrug molecules meet graphene oxide: an efficient graphene oxide-based nanovehicle toward cancer therapy. ACS Biomater Sci Eng. 2019;5(3):1384–1391. doi: 10.1021/acsbiomaterials.9b00114.
  • Umar AA, et al. Rational design of PEGylated magnetite grafted on graphene oxide with effective heating efficiency for magnetic hyperthermia application. Colloids Surf a-Physicochem Eng Aspects. 2021;619.
  • Zaharie-Butucel D, Potara M, Suarasan S, et al. Efficient combined near-infrared-triggered therapy: phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 check 10 dye-doxorubicin nanoplatforms. J Colloid Interf Sci. 2019;552:218–229. doi: 10.1016/j.jcis.2019.05.050.
  • Romero MP, Buzza HH, Stringasci MD, et al. Graphene oxide theranostic effect: conjugation of photothermal and photodynamic therapies based on an in vivo demonstration. Int J Nanomed. 2021;16:1601–1616. doi: 10.2147/IJN.S287415.
  • Guo S, Song Z, Ji D-K, et al. Combined photothermal and photodynamic therapy for cancer treatment using a multifunctional graphene oxide. Pharmaceutics. 2022;14(7):1365. doi: 10.3390/pharmaceutics14071365.
  • Chen W, Li S, Shen Y, et al. Polyethylenimine modified graphene oxide for effective chemo-gene-photothermal triples therapy of triple-negative breast cancer and inhibits metastasis. J Drug Delivery Sci Technol. 2022;74:103521. doi: 10.1016/j.jddst.2022.103521.
  • Xu M, Li Q, Xiang Y, et al. H2O2 self-providing synergistic chemodynamic/photothermal therapy using graphene oxide supported zero valence iron nanoparticles. RSC Adv. 2021;11(46):28973–28987. doi: 10.1039/d1ra04528h.
  • Ma B, Nishina Y, Bianco A. A glutathione responsive nanoplatform made of reduced graphene oxide and MnO2 nanoparticles for photothermal and chemodynamic combined therapy. Carbon. 2021;178:783–791. doi: 10.1016/j.carbon.2021.03.065.
  • Liu P, Xie X, Liu M, et al. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B. 2021;11(3):823–834. doi: 10.1016/j.apsb.2020.07.021.
  • Yin Y, Li X, Ma H, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21(5):2224–2231. doi: 10.1021/acs.nanolett.0c05039.
  • Xu L, Xiang J, Liu Y, et al. Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity. Nanoscale. 2016;8(6):3785–3795. doi: 10.1039/c5nr09208f.
  • Guo M, Zhao L, Liu J, et al. The underlying function and structural organization of the intracellular protein corona on graphdiyne oxide nanosheet for local immunomodulation. Nano Lett. 2021;21(14):6005–6013. doi: 10.1021/acs.nanolett.1c01048.
  • Yin Y, Nguyen TL, Wang B, et al. Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells. J Ind Eng Chem. 2019;80:870–876. doi: 10.1016/j.jiec.2019.08.038.
  • Yin F, Hu K, Chen Y, et al. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics. 2017;7(5):1133–1148. doi: 10.7150/thno.17841.
  • Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–8062. doi: 10.1021/nn5020787.
  • Wang Y, Sun G, Gong Y, et al. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res Lett. 2020;15(1):57. doi: 10.1186/s11671-020-3281-7.
  • Yang Y-Y, Zhang W, Liu H, et al. Cell-penetrating peptide-modified graphene oxide nanoparticles loaded with rictor siRNA for the treatment of triple-negative breast cancer. Drug Des Devel Ther. 2021;15:4961–4972. doi: 10.2147/DDDT.S330059.
  • Li T, Wan M, Mao C. Research progress of micro/nanomotors for cancer treatment. Chempluschem. 2020;85(12):2586–2598. doi: 10.1002/cplu.202000532.
  • Lin R, Yu W, Chen X, et al. Self-Propelled micro/nanomotors for tumor targeting delivery and therapy. Adv Healthc Mater. 2021;10(1):e2001212. doi: 10.1002/adhm.202001212.
  • Ou J, Liu K, Jiang J, et al. Micro-/nanomotors toward biomedical applications: the recent progress in biocompatibility. Small. 2020;16(27):e1906184. doi: 10.1002/smll.201906184.
  • Carter TJ, Agliardi G, Lin F-Y, et al. Potential of magnetic hyperthermia to stimulate localized immune activation. Small. 2021;17(14):e2005241. doi: 10.1002/smll.202005241.
  • Moise S, Byrne JM, El Haj AJ, et al. The potential of magnetic hyperthermia for triggering the differentiation of cancer cells. Nanoscale. 2018;10(44):20519–20525. doi: 10.1039/c8nr05946b.
  • Li X, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–674. doi: 10.1038/s41571-020-0410-2.
  • Han HS, Choi KY. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines. 2021;9(3):305. doi: 10.3390/biomedicines9030305.
  • Pu Y, Wu W, Zhou B, et al. Starvation therapy enabled "switch-on" NIR-II photothermal nanoagent for synergistic in situ photothermal immunotherapy. Nano Today. 2022;44:101461. doi: 10.1016/j.nantod.2022.101461.
  • Li C, Cheng Y, Li D, et al. Antitumor applications of photothermal agents and photothermal synergistic therapies. Int J Mol Sci. 2022;23(14). doi: 10.3390/ijms23147909.
  • Han W, Wang M, He H, et al. A procedurally activatable nanoplatform for chemo/chemodynamic synergistic therapy. Biomater Sci. 2022;10(10):2673–2680. doi: 10.1039/d1bm01940f.
  • Zhu-Ge X, Xi D-M, Zhang S-S. Multimodal tumor therapy based on chemodynamic therapy. Chin J Anal Chem. 2022;50(8):100121. doi: 10.1016/j.cjac.2022.100121.
  • Zhou Y, Fan S, Feng L, et al. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv Mater. 2021;33(48). doi: 10.1002/adma.202104223.
  • Liu N, Zuo W, Wu L, et al. Myeloperoxidase-targeted nanotheranostics for self-enhanced synergetic photo/chemo/chemodynamic therapy. Mater Today Chem. 2022;23:100740. doi: 10.1016/j.mtchem.2021.100740.
  • Tang Z, Wu S, Zhao P, et al. Chemical factory-guaranteed enhanced chemodynamic therapy for orthotopic liver cancer. Adv Sci. 2022;9(23). doi: 10.1002/advs.202201232.
  • Li Y, Liu X, Zhang X, et al. Immune cycle-based strategies for cancer immunotherapy. Adv Funct Materials. 2021;31(50). doi: 10.1002/adfm.202107540.
  • Shang Q, Dong Y, Su Y, et al. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev. 2022;185:114308. doi: 10.1016/j.addr.2022.114308.
  • Santos HS, Rodrigues L, Vera LNP, et al. In situ gene therapy. Curr Gene Ther. 2021;21(5):406–430. doi: 10.2174/1566523221666210504103323.
  • Sayed N, Allawadhi P, Khurana A, et al. Gene therapy: comprehensive overview and therapeutic applications. Life Sci. 2022;294:120375. doi: 10.1016/j.lfs.2022.120375.
  • Pipe SW, Reddy KR, Chowdary P. Gene therapy: practical aspects of implementation. Haemophilia. 2022;28(Suppl 4):44–52. doi: 10.1111/hae.14545.
  • Jia P-P, Sun T, Junaid M, et al. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ Pollut. 2019;247:595–606. doi: 10.1016/j.envpol.2019.01.072.
  • Samuel MS, Selvarajan E, Subramaniam K, et al. Synthesized beta-cyclodextrin modified graphene oxide (beta-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochem. 2020;93:28–35. doi: 10.1016/j.procbio.2020.02.014.
  • Lee H, Kim J, Lee J, et al. In vivo self-degradable graphene nanomedicine operated by DNAzyme and photo-switch for controlled anticancer therapy. Biomaterials. 2020;263:120402. doi: 10.1016/j.biomaterials.2020.120402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.