149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of surface modification of graphene oxide with a reactive silane coupling agent on the mechanical properties and biocompatibility of acrylic bone cements

, , , , , , & ORCID Icon show all
Pages 345-363 | Received 03 Oct 2023, Accepted 04 Dec 2023, Published online: 19 Dec 2023

References

  • Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38(2):155–182.
  • Lissarrague MH, Fascio ML, Goyanes S, et al., Acrylic bone cements: The Role of Nanotechnology in Improving Osteointegration and Tunable Mechanical Properties, J Biomed Nanotechnol. 2014;10(12):3536–3557. doi: 10.1166/jbn.2014.2045.
  • Ginebra M-P, Gil F-J, Planell J-A. Acrylic bone cements. Acta Orthop. 2010;81(SUPPL 341):1–27. doi: 10.3109/17453674.2010.487929.
  • Goto K, Tamura J, Shinzato S, et al. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;26(33):6496–6505. doi: 10.1016/j.biomaterials.2005.04.044.
  • Puska MA, Lassila LV, Närhi TO, et al. Improvement of mechanical properties of oligomer-modified acrylic bone cement with glass-fibers. Appl Compos Mater. 2004;11(1):17–31. doi: 10.1023/B:ACMA.0000003971.09042.e6.
  • Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, et al., Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polym. Int., 2021;70(9);1182–1201. doi: 10.1002/pi.6136.
  • Geffers M, Groll J, Gbureck U. Reinforcement strategies for load-bearing calcium phosphate biocements. Materials (Basel). 2015;8(5):2700–2717. doi: 10.3390/ma8052700.
  • Ahamad Said MN, Hasbullah NA, Rosdi MRH, et al. Polymerization and applications of poly(methyl methacrylate)-graphene oxide nanocomposites: a review. ACS Omega. 2022;7(51):47490–47503. doi: 10.1021/acsomega.2c04483.
  • Gonçalves G, Cruz SMA, Ramalho A, et al. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale. 2012;4(9):2937–2945. doi: 10.1039/c2nr30303e.
  • Rojas LMR, Zapata MEV, Suarez MG, et al. Optimization of mechanical and setting properties in acrylic bone cements added with graphene oxide. Appl Sci. 2021;11(11):5185. doi: 10.3390/app11115185.
  • Feng P, Zhao R, Tang WF, et al. Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties. Adv. Funct. Mater. 2023;33(23):2214726. doi: 10.1002/adfm.202214726.
  • Feng P, Shen S, Yang L, et al. Vertical and uniform growth of MoS2 nanosheets on GO nanosheets for efficient mechanical reinforcement in polymer scaffold. Virtual Phys. Prototyp. 2023;18(1):e2115384. doi: 10.1080/17452759.2022.2115384.
  • Marrs B, Andrews R, Rantell T, et al. Augmentation of acrylic bone cement with multiwall carbon nanotubes. J Biomed Mater Res A. 2006;77(2):269–276. doi: 10.1002/jbm.a.30651.
  • Gonçalves G, Portolés MT, Ramírez-Santillán C, et al. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. J Mater Sci Mater Med. 2013;24(12):2787–2796. doi: 10.1007/s10856-013-5030-2.
  • Zhao J, Liu L, Li F. Graphene Oxide : Physics and Applications. Springer, 2015, Berlin, Heidelberg.
  • Jun SC, Fundamental of Graphene. In: A. Rashid bin Mohd Yusoff, Editor. Graphene-based Energy Devices. Germany: Wiley-VCH, 2015, p. 1–48. doi: 10.1002/9783527690312.ch1.
  • Khoei AR, Khorrami MS. “Mechanical properties of graphene oxide: a molecular dynamics study,” fullerenes. Nanotub Carbon Nanostruct. 2016;24(9):594–603. doi: 10.1080/1536383X.2016.1208180.
  • Zhang W, Chang Q, Xu L, et al. Graphene oxide-Copper Nanocomposite-Coated porous CaP scaffold for vascularized bone regeneration via activation of hif-1 α. Adv Healthc Mater. 2016;5(11):1299–1309. doi: 10.1002/adhm.201500824.
  • Paz E, Ballesteros Y, Abenojar J, et al. Advanced G-MPS-PMMA Bone Cements: Influence of Graphene Silanisation on Fatigue Performance, Thermal Properties and Biocompatibility. Nanomaterials. 2021;11:139. doi: 10.3390/nano11010139.
  • Tavakoli M, Bakhtiari SSE, Karbasi S. Incorporation of chitosan/graphene oxide nanocomposite into the PMMA bone cement: physical, mechanical and biological evaluation. Int J Biol Macromol. 2020;149:783–793. doi: 10.1016/j.ijbiomac.2020.01.300.
  • Soleymani S, Bakhtiari E, Bakhsheshi-Rad HR, et al. Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: an overview of physical, mechanical, and biological properties. Polymers . 2020;12(7):1469. doi: 10.3390/polym12071469.
  • Levenez B, Gil-Cortes T, Rodríguez-Fuentes N, et al. Silanized graphene oxide as a reinforcing agent for acrylic bone cements: physicochemical, mechanical and biological characterization. J Biomater Sci Polym Ed. 2021;32(13):1736–1753. doi: 10.1080/09205063.2021.1937464.
  • Plueddemann EP. Adhesion through silane coupling agents. J Adhes. 1970;2(3):184–201. doi: 10.1080/0021846708544592.
  • Hu X, Su E, Zhu B, et al. Preparation of silanized graphene/poly(methyl methacrylate) nanocomposites in situ copolymerization and its mechanical properties. Compos Sci Technol. 2014;97:6–11. doi: 10.1016/j.compscitech.2014.03.019.
  • Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–4814. doi: 10.1021/nn1006368.
  • Kamal MR, Uribe-Calderon J. Nanparticles and polymer nanocomposites. In Mukhopadhyay P and Gupta RK (Eds.) Graphite, graphene, and their polymer nanocomposites. CRC Press, 2013, pp. 353–392.
  • International Organization for Standardization (ISO) : 5833. Implants for surgery-Acrylic resin cements. 2002.
  • American Society for Testing and Materials. Standard specification for acrylic bone cement 1. Astm F451- 21). 2014;i(Reapproved 2007):1–13. doi: 10.1520/F0451-21.2.
  • Miroshnikov Y, Grinbom G, Gershinsky G, et al. Do we need covalent bonding of Si nanoparticles on graphene oxide for Li-ion batteries? Faraday Discuss. 2014;173:391–402. doi: 10.1039/c4fd00089g.
  • Abbas SS, Rees GJ, Kelly NL, et al. Facile silane functionalization of graphene oxide. Nanoscale. 2018;10(34):16231–16242. doi: 10.1039/c8nr04781b.
  • Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75–127. doi: 10.1016/j.pmatsci.2017.07.004.
  • Stobinski L, Lesiak B, Malolepszy A, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectros Relat Phenomena. 2014;195:145–154. doi: 10.1016/j.elspec.2014.07.003.
  • Serodre T, Oliveira NAP, Miquita DR, et al. Surface silanization of graphene oxide under mild reaction conditions. J Braz Chem Soc. 2019;30(11):2488–2499. doi: 10.21577/0103-5053.20190167.
  • Ţucureanu V, Matei A, Avram AM. FTIR spectroscopy for carbon family study. Crit Rev Anal Chem. 2016;46(6):502–520. doi: 10.1080/10408347.2016.1157013.
  • Dimiev AM, Eigler S. Mechanism of Formation and Chemical Structure of Graphene Oxide. In Dimiev AM, Eigler S, Editors. Graphene Oxide: Fundamentals and Applications. 2016;36–84. doi:10.1002/9781119069447.ch2
  • Zhang G, Wang F, Dai J, et al. Effect of functionalization of graphene nanoplatelets on the mechanical and thermal properties of silicone rubber composites. Materials (Basel). 2016;9(2). doi: 10.3390/ma9020092.
  • Li J, Cui J, Yang J, et al. Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection. Prog Org Coatings. 2016;99:443–451. doi: 10.1016/j.porgcoat.2016.07.008.
  • Gao W. Synthesis, Structure and Characterizations. In Graphene oxide: Reduction recipes, spectroscopy, and applications. Springer; 2015;1–28. doi: 10.1007/978-3-319-15500-5
  • Li W, Zhou B, Wang M, et al. Silane functionalization of graphene oxide and its use as a reinforcement in bismaleimide composites. J Mater Sci. 2015;50(16):5402–5410. doi: 10.1007/s10853-015-9084-z.
  • Lee JH, Kim SH. Fabrication of silane-grafted graphene oxide and its effect on the structural, thermal, mechanical, and hysteretic behavior of polyurethane. Sci Rep. 2020;10(1):19152. doi: 10.1038/s41598-020-76153-8.
  • Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev. 2010;39(1):228–240. doi: 10.1039/b917103g.
  • Xu Z. Fundamental properties of graphene. In: Zhu H, et al., editors. Graphene. Amsterdam: Elsevier Inc., 2017;73–102. doi: 10.1016/B978-0-12-812651-6.00004-5.
  • Sun L. Structure and synthesis of graphene oxide. Chin J Chem Eng. 2019;27(10):2251–2260. doi: 10.1016/j.cjche.2019.05.003.
  • Rathnam VSS, Agarwal T, Kulanthaivel S, et al. Silanization improves biocompatibility of graphene oxide. Mater Sci Eng C, 2020;110:110647. doi: 10.1016/j.msec.2020.110647.
  • Sahoo JK, Paikra SK, Baliarsingh A, et al. Surface functionalization of graphene oxide using amino silane magnetic nanocomposite for Chromium (VI) removal and bacterial treatment. Nano Express, 2020;1:010062. doi: 10.1088/2632-959x/ab9e3f.
  • Subodh NK, Mogha K, Chaudhary G, et al. Fur-Imine-Functionalized Graphene Oxide-Immobilized Copper Oxide Nanoparticle Catalyst for the Synthesis of Xanthene Derivatives. ACS Omega, 2018;3(11):16377–16385. doi: 10.1021/acsomega.8b01781.
  • Plueddemann EP. Adhesion Through Silane Coupling Agents. J. Adhes. 1970;2(3):184–201. doi: 10.1080/0021846708544592.
  • Paz E, Ballesteros Y, Forriol F, et al. Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements. Mater Sci Eng C. 2019;104:109946. doi: 10.1016/j.msec.2019.109946.
  • Cisneros-Pineda OG, Herrera Kao W, Loría-Bastarrachea MI, et al., Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations. Mater Sci Eng C. 2014;40:157–163. doi: 10.1016/j.msec.2014.03.064.
  • Mohammed L, Ansari MNM, Pua G, et al. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int J Polym Sci. 2015. doi: 10.1155/2015/243947.
  • Chaturvedi S, Kulshrestha S, Bhardwaj K, et al. A Review on Properties and Applications of Xanthan Gum. Microbial Polymers. Singapure: Springer, 2021. doi: 10.1007/978-981-16-0045-6_4.
  • Gdoutos EE. Fracture Mechanics. Composite Materials. Solid Mechanics and Its Applications. Cham: Springer, 2020. doi:10.1007/978-3-030-35098-7_11.
  • Hu X, Ouyang S, Mu L, et al. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress and Metabolic Profiles. Environ Sci Technol. 2015;49(18):10825–33. doi: 10.1021/acs.est.5b02102.
  • Zhang W, Yan L, Li M, et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicol Lett. 2015;237(2):61–71. doi: 10.1016/j.toxlet.2015.05.021.
  • Guo S, Nishina Y, Bianco A. Reaction between Graphene Oxide and Intracellular Glutathione Affects Cell Viability and Proliferation. ACS Appl Mater Intrerface. 2021; 13(3):3528–3535. doi: 10.1021/acsami.0c17523.
  • Gonalves G, Cruz SMA, Ramalho A. et al. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale, 2012;4(9):2937–2945. doi: 10.1039/c2nr30303e.
  • Martindale JL, Holbrook NJ, Cellular Response to Oxidative Stress: Signaling for Suicide and Survival. J Cell Physiol. 2002;15:1–15. doi: 10.1002/jcp.10119.
  • Burton GJ, Jauniaux E, Oxidative stress. Best Pract. Res Clin Obstet Gynaecol. 2011;25(3):287–299. doi: 10.1016/j.bpobgyn.2010.10.016.
  • Zapata MEV, Tovar CDG, Hernandez JHM, The role of chitosan and graphene oxide in bioactive and antibacterial properties of acrylic bone cements. Biomolecules, 2020;10(12):1–23. doi: 10.3390/biom10121616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.