178
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 415-441 | Received 07 Oct 2023, Accepted 08 Dec 2023, Published online: 19 Dec 2023

References

  • Zivarpour P, Hallajzadeh J, Asemi Z, et al. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int. 2021;21(1):544. doi: 10.1186/s12935-021-02243-w.
  • Wan Z, Sun R, Moharil P, et al. Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. J Leukoc Biol. 2021;109(2):425–436. doi: 10.1002/jlb.5mr0620-063rr.
  • De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441–e441. doi: 10.1038/bcj.2016.50.
  • Arora RS, Arora B. Acute leukemia in children: a review of the current indian data. South Asian J Cancer. 2016;5(3):155–160. doi: 10.4103/2278-330x.187591.
  • Pelcovits A, Niroula R. Acute myeloid leukemia: a review. R I Med J. 2020;103(3):38–40.
  • Rafiq S, Raza MH, Younas M, et al. Molecular targets of curcumin and future therapeutic role in leukemia. JBM. 2018;6(4):33–50. doi: 10.4236/jbm.2018.64003.
  • Shallis RM, Wang R, Davidoff A, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87. doi: 10.1016/j.blre.2019.04.005.
  • Cirri D, Schirmeister T, Seo EJ, et al. Antiproliferative properties of a few auranofin-related gold(I) and silver(I) complexes in leukemia cells and their interferences with the ubiquitin proteasome system. Molecules. 2020;25(19):4454. doi: 10.3390/molecules25194454.
  • Daver N, Wei AH, Pollyea DA, et al. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J. 2020;10(10):107. doi: 10.1038/s41408-020-00376-1.
  • Girigoswami A, Girigoswami K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes (Basel). 2023;14(7):1370. doi: 10.3390/genes14071370.
  • Limongi T, Susa F, Cauda V. Nanoparticles for hematologic diseases detection and treatment. J Hematol Oncol. 2019;4:1000183. doi: 10.15761/hmo.1000183.
  • Gowtham P, Arumugam VA, Harini K, et al. Nanostructured proteins for delivering drugs to diseased tissues. Bioinspired, Biomim Nanobiomaterials. 2023;12(3):115–129. doi: 10.1680/jbibn.23.00004.
  • Gonzalez-Valdivieso J, Girotti A, Schneider J, et al. Advanced nanomedicine and cancer: challenges and opportunities in clinical translation. Int J Pharm. 2021;599:120438. doi: 10.1016/j.ijpharm.2021.120438.
  • Sharmiladevi P, Girigoswami K, Haribabu V, et al. Nano-enabled theranostics for cancer. Mater Adv. 2021;2(9):2876–2891. doi: 10.1039/D1MA00069A.
  • Gu W, Qu R, Meng F, et al. Polymeric nanomedicines targeting hematological malignancies. J Control Release. 2021;337:571–588. doi: 10.1016/j.jconrel.2021.08.001.
  • Mostafavi E, Zarepour A, Barabadi H, et al. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotechnol Rep (Amst). 2022;34:e00714. doi: 10.1016/j.btre.2022.e00714.
  • O’Donnell MR, Abboud CN, Altman J, et al. Acute myeloid leukemia. J Natl Compr Canc Netw. 2012;10(8):984–1021. doi: 10.6004/jnccn.2012.0103.
  • Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–2107. doi: 10.1002/cncr.22233.
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi: 10.1182/blood-2016-03-643544.
  • Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017;31(1):63–76. doi: 10.1016/j.blre.2016.08.005.
  • Othus M, Sekeres MA, Nand S, et al. Relative survival following response to 7 + 3 versus azacytidine is similar in acute myeloid leukemia and high-risk myelodysplastic syndromes: an analysis of four SWOG studies. Leukemia. 2019;33(2):371–378. doi: 10.1038/s41375-018-0275-x.
  • Castaigne S, Pautas C, Terré C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–1516. doi: 10.1016/s0140-6736(12)60485-1.
  • Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–464. doi: 10.1056/NEJMoa1614359.
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–629. doi: 10.1056/NEJMoa2012971.
  • Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–1089. doi: 10.1056/NEJMoa1112304.
  • Burnett AK, Russell NH, Hills RK, et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol. 2013;31(27):3360–3368. doi: 10.1200/jco.2012.47.4874.
  • Roboz GJ. Novel approaches to the treatment of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2011;2011:43–50. doi: 10.1182/asheducation-2011.1.43.
  • Attar EC, De Angelo DJ, Supko JG, et al. Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin Cancer Res. 2008;14(5):1446–1454. doi: 10.1158/1078-0432.ccr-07-4626.
  • Mrózek K, Marcucci G, Nicolet D, et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol. 2012;30(36):4515–4523. doi: 10.1200/jco.2012.43.4738.
  • Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–494. doi: 10.1200/jco.2010.30.1820.
  • Ghazaly EA, Miraki-Moud F, Smith P, et al. Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function. J Biol Chem. 2020;295(16):5496–5508. doi: 10.1074/jbc.RA119.010467.
  • Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21(2):178–184. doi: 10.1038/nm.3788.
  • Klossowski S, Miao H, Kempinska K, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest. 2020;130(2):981–997. doi: 10.1172/jci129126.
  • Liao Q, Wang B, Li X, et al. miRNAs in acute myeloid leukemia. Oncotarget. 2017;8(2):3666–3682. doi: 10.18632/oncotarget.
  • Bousquet M, Harris MH, Zhou B, et al. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci U S A. 2010;107(50):21558–21563. doi: 10.1073/pnas.1016611107.
  • Bai J, Guo A, Hong Z, et al. Upregulation of microRNA-100 predicts poor prognosis in patients with pediatric acute myeloid leukemia. Onco Targets Ther. 2012;5:213–219. doi: 10.2147/ott.s36017.
  • Wang F, Wang XS, Yang GH, et al. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 2012;39(3):2713–2722. doi: 10.1007/s11033-011-1026-5.
  • Jiang W, Min J, Sui X, et al. MicroRNA-26a-5p and microRNA-23b-3p upregulate peroxiredoxin III in acute myeloid leukemia. Leuk Lymphoma. 2015;56(2):460–471. doi: 10.3109/10428194.2014.924115.
  • Trissal MC, DeMoya RA, Schmidt AP, et al. MicroRNA-223 regulates granulopoiesis but is not required for HSC maintenance in mice. PLoS One. 2015;10(3):e0119304. doi: 10.1371/journal.pone.0119304.
  • Su R, Lin HS, Zhang XH, et al. MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene. 2015;34(25):3226–3239. doi: 10.1038/onc.2014.274.
  • Kadia TM, Ravandi F, Cortes J, et al. New drugs in acute myeloid leukemia. Ann Oncol. 2016;27(5):770–778. doi: 10.1093/annonc/mdw015.
  • Li C, You X, Xu X, et al. A metabolic reprogramming amino acid polymer as an immunosurveillance activator and leukemia targeting drug carrier for T-cell acute lymphoblastic leukemia. Adv Sci (Weinh). 2022;9(9):e2104134. doi: 10.1002/advs.202104134.
  • Huang L, Huang J, Huang J, et al. Nanomedicine – a promising therapy for hematological malignancies. Biomater Sci. 2020;8(9):2376–2393. doi: 10.1039/D0BM00129E.
  • Houshmand M, Garello F, Circosta P, et al. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials (Basel). 2020;10(2):276. doi: 10.3390/nano10020276.
  • Leventakos K, Lewis RE, Kontoyiannis DP. Fungal infections in leukemia patients: how do we prevent and treat them? Clin Infect Dis. 2010;50(3):405–415. doi: 10.1086/649879.
  • Kulkarni S, Pandey A, Mutalik S. Heterogeneous surface-modified nanoplatforms for the targeted therapy of haematological malignancies. Drug Discov Today. 2020;25(1):160–167. doi: 10.1016/j.drudis.2019.10.001.
  • Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ. 2021;375:n2026. doi: 10.1136/bmj.n2026.
  • Hu Q, Sun W, Wang J, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng. 2018;2(11):831–840. doi: 10.1038/s41551-018-0310-2.
  • Ci T, Li H, Chen G, et al. Cryo-shocked cancer cells for targeted drug delivery and vaccination. Sci Adv. 2020;6(50):eabc3013. doi: 10.1126/sciadv.abc3013.
  • Cho B-S, Kim H-J, Konopleva M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J Intern Med. 2017;32(2):248–257. doi: 10.3904/kjim.2016.244.
  • Walasek A. The new perspectives of targeted therapy in acute myeloid leukemia. Adv Clin Exp Med. 2019;28(2):271–276. doi: 10.17219/acem/81610.
  • Walter RB. Where do we stand with radioimmunotherapy for acute myeloid leukemia? Expert Opin Biol Ther. 2022;22(5):555–561. doi: 10.1080/14712598.2022.2060735.
  • Zhao Y, Chen X, Feng S. Autologous hematopoietic stem cell transplantation in acute myelogenous leukemia. Biol Blood Marrow Transplant. 2019;25(9):e285–e292. doi: 10.1016/j.bbmt.2019.04.027.
  • Deshantri AK, Varela Moreira A, Ecker V, et al. Nanomedicines for the treatment of hematological malignancies. J Control Release. 2018;287:194–215. doi: 10.1016/j.jconrel.2018.08.034.
  • Zhong W, Zhang X, Zhao M, et al. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater Sci. 2020;8(17):4692–4711. doi: 10.1039/D0BM00772B.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8.
  • Verma R, Chauhan A, Kumari S, et al. Green synthesis of ZnO NPs using timur (Zanthoxylum armatum DC.) plant extract for antimicrobial and dye degradation applications. Chem Pap. 2023;77(9):5587–5597. doi: 10.1007/s11696-023-02831-2.
  • Nath D, Banerjee P. Green nanotechnology - a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36(3):997–1014. doi: 10.1016/j.etap.2013.09.002.
  • Sadjadi S, Mohammadi P, Heravi M. Bio-assisted synthesized Pd nanoparticles supported on ionic liquid decorated magnetic halloysite: an efficient catalyst for degradation of dyes. Sci Rep. 2020;10(1):6535. doi: 10.1038/s41598-020-63558-8.
  • Vinhas R, Mendes R, Fernandes AR, et al. Nanoparticles-emerging potential for managing leukemia and lymphoma. Front Bioeng Biotechnol. 2017;5:79. doi: 10.3389/fbioe.2017.00079.
  • Magdalena S, Dorota H. Biological activity of silver nanoparticles and their applications in anticancer therapy: silver nanoparticles. Rijeka: IntechOpen; 2018.
  • Akshaya K, Arthi C, Pavithra AJ, et al. Bioconjugated gold nanoparticles as an efficient colorimetric sensor for cancer diagnostics. Photodiagnosis Photodyn Ther. 2020;30:101699. doi: 10.1016/j.pdpdt.2020.101699.
  • Namvar F, Rahman HS, Mohamad R, et al. Apoptosis induction in human leukemia cell lines by gold nanoparticles synthesized using the green biosynthetic approach. J Nanomater. 2015;2015:1–10. doi: 10.1155/2015/642621.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi: 10.3390/pharmaceutics9020012.
  • Mayer LD, Tardi P, Louie AC. CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine. 2019;14:3819–3830. doi: 10.2147/ijn.s139450.
  • Chen KTJ, Gilabert-Oriol R, Bally MB, et al. Recent treatment advances and the role of nanotechnology, combination products, and immunotherapy in changing the therapeutic landscape of acute myeloid leukemia. Pharm Res. 2019;36(9):125. doi: 10.1007/s11095-019-2654-z.
  • Mercy DJ, Harini K, Madhumitha S, et al. pH-responsive polymeric nanostructures for cancer theranostics. J Met Mater Miner. 2023;33(2):1–15. doi: 10.55713/jmmm.v33i2.1609.
  • Wang J, Hu S, Mao W, et al. Assemblies of peptide-cytotoxin conjugates for tumor-homing chemotherapy. Adv Funct Materials. 2019;29(32):1904925. doi: 10.1002/adfm.201904925.
  • Pallavi P, Harini K, Crowder S, et al. Rhodamine-conjugated anti-stokes gold nanoparticles with higher ROS quantum yield as theranostic probe to arrest cancer and MDR bacteria. Appl Biochem Biotechnol. 2023;195(11):6979–6993. doi: 10.1007/s12010-023-04475-0.
  • Ancona A, Dumontel B, Garino N, et al. Lipid-Coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials (Basel). 2018;8(3):143. doi: 10.3390/nano8030143.
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41(1):189–207. doi: 10.1016/s0065-2571(00)00013-3.
  • D’Mello SR, Cruz CN, Chen ML, et al. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12(6):523–529. doi: 10.1038/nnano.2017.67.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009.
  • Huang X, Lin H, Huang F, et al. Targeting approaches of nanomedicines in acute myeloid leukemia. Dose Response. 2019;17(4):1559325819887048. doi: 10.1177/1559325819887048.
  • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. doi: 10.1126/science.1232033.
  • Mihaila RG, Topircean D. The high-performance technology CRISPR/Cas9 improves knowledge and management of acute myeloid leukemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021;165(3):249–257. doi: 10.5507/bp.2021.048.
  • Staahl BT, Benekareddy M, Coulon-Bainier C, et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol. 2017;35(5):431–434. doi: 10.1038/nbt.3806.
  • Ho T-C, Kim HS, Chen Y, et al. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Sci Adv. 2021;7(21):eabg3217. doi: 10.1126/sciadv.abg3217.
  • Neldeborg S, Soerensen JF, Møller CT, et al. Dual intron-targeted CRISPR-Cas9-mediated disruption of the AML RUNX1-RUNX1T1 fusion gene effectively inhibits proliferation and decreases tumor volume in vitro and in vivo. Leukemia. 2023;37(9):1792–1801. doi: 10.1038/s41375-023-01950-9.
  • Gurney M, Stikvoort A, Nolan E, et al. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica. 2022;107(2):437–445. doi: 10.3324/haematol.2020.271908.
  • He BL, Yang N, Man CH, et al. Follistatin is a novel therapeutic target and biomarker in FLT3/ITD acute myeloid leukemia. EMBO Mol Med. 2020;12(4):e10895. doi: 10.15252/emmm.201910895.
  • Narimani M, Sharifi M, Jalili A. Knockout of BIRC5 gene by CRISPR/Cas9 induces apoptosis and inhibits cell proliferation in leukemic cell lines, HL60 and KG1. Blood Lymphat Cancer. 2019;9:53–61. doi: 10.2147/blctt.s230383.
  • McEwan B, Padalia Z, Porras A, et al. Allogeneic CRISPR/Cas9 gene-edited CAR-T cells targeting CD33 show potent preclinical activity against AML cells. Cancer Res. 2019;79(13_Supplement):1428–1428. doi: 10.1158/1538-7445.AM2019-1428.
  • Sharmiladevi P, Akhtar N, Haribabu V, et al. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Bio Mater. 2019;2(4):1634–1642. doi: 10.1021/acsabm.9b00039.
  • Shurfa M, Girigoswami A, Devi RS, et al. Combinatorial effect of doxorubicin entrapped in Alginate-Chitosan hybrid polymer and cerium oxide nanocomposites on skin cancer management in mice. J Pharm Sci. 2023;112(11):2891–2900. doi: 10.1016/j.xphs.2023.08.014.
  • Poornima G, Harini K, Pallavi P, et al. RNA–a choice of potential drug delivery system. Int. J. Polym. 2022;72(10):778–792. doi: 10.1080/00914037.2022.2058946.
  • Zou M, Zhong Z, Wen C. Characterization and anti-acute myeloid leukemia and anti-acute T cell leukemia properties of zinc nanoparticles synthesized by a green approach for bioremediation applications. Arch Med Sci. 2021:140295. doi: 10.5114/aoms/140295.
  • Adebayo IA, Usman AI, Shittu FB, et al. Boswellia dalzielii-mediated silver nanoparticles inhibited acute myeloid leukemia (AML) kasumi-1 cells by inducing cell cycle arrest. Bioinorg Chem Appl. 2020;2020:8898360–8898311. doi: 10.1155/2020/8898360.
  • Ahmeda A, Zangeneh M, Zangeneh A. Green formulation and chemical characterization of lens culinaris seed aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to mitoxantrone in a leukemic mouse model. Appl Organom Chem. 2020;34(3):e5369. doi: 10.1002/aoc.5369.
  • Banerjee P, Roy P, Nath D. Evaluation of chemopreventive potential and regulated toxicity of a phyto-fabricated silver nanoformulation using bark extract of saraca asoca in acute myeloid leukemia in vivo and in vitro. Curr Res Complement Altern Med. 2022;6:148. doi: 10.29011/2577-2201.100048.
  • Hemmati S, Joshani Z, Zangeneh A, et al. Biosynthesis and chemical characterization of polydopamine-capped silver nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl Organom Chemis. 2020;34(2):e5277. doi: 10.1002/aoc.5277.
  • Ahmeda A, Zangeneh A, Zangeneh MM. Preparation, formulation, and chemical characterization of silver nanoparticles using Melissa officinalis leaf aqueous extract for the treatment of acute myeloid leukemia in vitro and in vivo conditions. Appl Organom Chem. 2020;34(2):e5378. doi: 10.1002/aoc.5378.
  • Kong F, Bai H, Ma M, et al. Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today. 2021;37:101106. doi: 10.1016/j.nantod.2021.101106.
  • Zangeneh M, Zangeneh A. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl Organom Chem. 2019;34(1):e5271. doi: 10.1002/aoc.5271.
  • Shahriari M, Hemmati S, Zangeneh A, et al. Decoration of silver nanoparticles on multi-walled carbon nanotubes: investigation of its anti-acute leukemia property against acute myeloid leukemia and acute T cell leukemia. Appl Organom Chem. 2020;34(4):e5476. doi: 10.1002/aoc.5476.
  • Sun Y, Liu X, Wang L, et al. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater. 2022;10:117–130. doi: 10.1016/j.bioactmat.2021.08.012.
  • Dou J, Li L, Guo M, et al. Iron oxide nanoparticles combined with cytosine arabinoside show anti-leukemia stem cell effects on acute myeloid leukemia by regulating reactive oxygen species. Int J Nanomedicine. 2021;16:1231–1244. doi: 10.2147/ijn.s278885.
  • Wang X, Huang R, Wu W, et al. Amplifying STING activation by bioinspired nanomedicine for targeted chemo- and immunotherapy of acute myeloid leukemia. Acta Biomater. 2023;157:381–394. doi: 10.1016/j.actbio.2022.11.007.
  • Wang T, Zhang X, Jia M, et al. Hydrophilic realgar nanocrystals prolong the survival of refractory acute myeloid leukemia mice through inducing multi-lineage differentiation and apoptosis. Int J Nanomedicine. 2022;17:2191–2202. doi: 10.2147/ijn.s358469.
  • Bai H, Wang T, Kong F, et al. CXCR4 and CD44 dual-targeted prussian blue nanosystem with daunorubicin loaded for acute myeloid leukemia therapy. J Chem Eng. 2021;405:126891. doi: 10.1016/j.cej.2020.126891.
  • Chen KTJ, Militao GGC, Anantha M, et al. Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. J Control Release. 2021;333:246–257. doi: 10.1016/j.jconrel.2021.03.042.
  • Chen M, Qiao Y, Cao J, et al. Biomimetic doxorubicin/ginsenoside co-loading nanosystem for chemoimmunotherapy of acute myeloid leukemia. J Nanobiotechnology. 2022;20(1):273. doi: 10.1186/s12951-022-01491-w.
  • Alhallak K, Sun J, Muz B, et al. Nanoparticle T cell engagers for the treatment of acute myeloid leukemia. Oncotarget. 2021;12(19):1878–1885. doi: 10.18632/oncotarget.28054.
  • Darwish NHE, Sudha T, Godugu K, et al. Novel targeted nano-parthenolide molecule against NF-kB in acute myeloid leukemia. Molecules. 2019;24(11):2103. doi: 10.3390/molecules24112103.
  • Xie J, Zhao X, Zhang P, et al. Codelivery of BCL2 and MCL1 inhibitors enabled by phenylboronic acid-functionalized polypeptide nanovehicles for synergetic and potent therapy of acute myeloid leukemia. Adv Sci (Weinh). 2023;10(8):e2204866. doi: 10.1002/advs.202204866.
  • Xia Y, An J, Li J, et al. Transferrin-guided intelligent nanovesicles augment the targetability and potency of clinical PLK1 inhibitor to acute myeloid leukemia. Bioact Mater. 2023;21:499–510. doi: 10.1016/j.bioactmat.2022.08.032.
  • Wang D, Li H, Chen W, et al. Efficient tumor-targeting delivery of siRNA via folate-receptor mediated biomimetic albumin nanoparticles enhanced by all-trans retinoic acid. Mater Sci Eng C Mater Biol Appl. 2021;119:111583. doi: 10.1016/j.msec.2020.111583.
  • Wang Y, Xie Y, Williams J, et al. Use of polymeric CXCR4 inhibitors as siRNA delivery vehicles for the treatment of acute myeloid leukemia. Cancer Gene Ther. 2020;27(1–2):45–55. doi: 10.1038/s41417-019-0095-9.
  • Vaikari VP, Park M, Keossayan L, et al. Anti-CD99 scFv-ELP nanoworms for the treatment of acute myeloid leukemia. Nanomedicine. 2020;29:102236. doi: 10.1016/j.nano.2020.102236.
  • Pallarès V, Núñez Y, Sánchez-García L, et al. Antineoplastic effect of a diphtheria toxin-based nanoparticle targeting acute myeloid leukemia cells overexpressing CXCR4. J Control Release. 2021;335:117–129. doi: 10.1016/j.jconrel.2021.05.014.
  • Nirachonkul W, Ogonoki S, Thumvijit T, et al. CD123-targeted nano-curcumin molecule enhances cytotoxic efficacy in leukemic stem cells. Nanomaterials (Basel). 2021;11(11):2974. doi: 10.3390/nano11112974.
  • Kushwaha AC, Mohanbhai SJ, Sardoiwala MN, et al. Epigenetic regulation of Bmi1 by ubiquitination and proteasomal degradation inhibit bcl-2 in acute myeloid leukemia. ACS Appl Mater Interfaces. 2020;12(23):25633–25644. doi: 10.1021/acsami.0c06186.
  • Yu Y, Meng Y, Xu X, et al. A ferroptosis-inducing and leukemic cell-targeting drug nanocarrier formed by redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano. 2023;17(4):3334–3345. doi: 10.1021/acsnano.2c06313.
  • Xu X, Wang J, Tong T, et al. A self-assembled leucine polymer sensitizes leukemic stem cells to chemotherapy by inhibiting autophagy in acute myeloid leukemia. Haematologica. 2022;107(10):2344–2355. doi: 10.3324/haematol.2021.280290.
  • Nguyen TM, Jambhrunkar M, Wong SS, et al. Targeting acute myeloid leukemia using sphingosine kinase 1 inhibitor-loaded liposomes. Mol Pharm. 2023;20(8):3937–3946. doi: 10.1021/acs.molpharmaceut.3c00078.
  • Wang C, Zhang W, He Y, et al. Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nat Nanotechnol. 2021;16(12):1413–1423. doi: 10.1038/s41565-021-00980-7.
  • Khokhlatchev AV, Sharma A, Deering TG, et al. Ceramide nanoliposomes augment the efficacy of venetoclax and cytarabine in models of acute myeloid leukemia. Faseb J. 2022;36(10):e22514. doi: 10.1096/fj.202200765R.
  • Hemmati S, Zamenian T, Delsooz N, et al. Preparation and synthesis a new chemotherapeutic drug of silver nanoparticle-chitosan composite; chemical characterization and analysis of their antioxidant, cytotoxicity, and anti-acute myeloid leukemia effects in comparison to daunorubicin in a leukemic mouse model. Appl Organom Chem. 2020;34(2):e5274. doi: 10.1002/aoc.5274.
  • Deng R, Shen N, Yang Y, et al. Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomater. 2018;167:80–90. doi: 10.1016/j.biomaterials.2018.03.013.
  • Shen N, Yan F, Pang J, et al. HDL-AuNPs-BMS nanoparticle conjugates as molecularly targeted therapy for leukemia. ACS Appl Mater Interfaces. 2018;10(17):14454–14462. doi: 10.1021/acsami.8b01696.
  • Zong H, Sen S, Zhang G, et al. In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche. Leukemia. 2016;30(7):1582–1586. doi: 10.1038/leu.2015.343.
  • Varshosaz J, Hassanzadeh F, Sadeghi Aliabadi H, et al. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. Biomed Res Int. 2014;2014:525684–525614. doi: 10.1155/2014/525684.
  • Sun D, Zhou JK, Zhao L, et al. Novel curcumin liposome modified with hyaluronan targeting CD44 plays an anti-leukemic role in acute myeloid leukemia in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9(20):16857–16868. doi: 10.1021/acsami.7b02863.
  • Guo J, Russell EG, Darcy R, et al. Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol Pharm. 2017;14(3):940–952. doi: 10.1021/acs.molpharmaceut.6b01150.
  • Mandal T, Beck M, Kirsten N, et al. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci Rep. 2018;8(1):989. doi: 10.1038/s41598-017-18932-4.
  • Jiang X, Bugno J, Hu C, et al. Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150 nanoparticles. Cancer Res. 2016;76(15):4470–4480. doi: 10.1158/0008-5472.can-15-2949.
  • Yang Z, Yu B, Zhu J, et al. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale. 2014;6(16):9742–9751. doi: 10.1039/c4nr01510j.
  • Floc’h N, Ashton S, Taylor P, et al. Optimizing therapeutic effect of Aurora B inhibition in acute myeloid leukemia with AZD2811 nanoparticles. Mol Cancer Ther. 2017;16(6):1031–1040. doi: 10.1158/1535-7163.mct-16-0580.
  • Johnson DT, Zhou J, Kroll AV, et al. Acute myeloid leukemia cell membrane-coated nanoparticles for cancer vaccination immunotherapy. Leukemia. 2022;36(4):994–1005. doi: 10.1038/s41375-021-01432-w.
  • Li Q, Su R, Bao X, et al. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater. 2022;144:109–120. doi: 10.1016/j.actbio.2022.03.030.
  • Cao K, Du Y, Bao X, et al. Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine FTO demethylase as a strategy against leukemic stem cells. Small. 2022;18(13):e2106558. doi: 10.1002/smll.202106558.
  • Wang Q, Liu Y, Wang H, et al. Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells. Nat Commun. 2022;13(1):5657. doi: 10.1038/s41467-022-33410-w.
  • Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the anticancer activity of pH-sensitive polyketal nanoparticles for acute myeloid leukemia. Mol Pharm. 2021;18(5):2015–2031. doi: 10.1021/acs.molpharmaceut.0c01243.
  • Du Y, Han M, Cao K, et al. Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia. ACS Nano. 2021;15(11):17689–17704. doi: 10.1021/acsnano.1c05547.
  • Foulkes R, Man E, Thind J, et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653–4664. doi: 10.1039/D0BM00558D.
  • Zhang X-Q, Xu X, Bertrand N, et al. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64(13):1363–1384. doi: 10.1016/j.addr.2012.08.005.
  • Sun Q, Bai X, Sofias AM, et al. Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacol Sin. 2020;41(7):954–958. doi: 10.1038/s41401-020-0448-9.
  • Thapa RK, Kim JO. Nanomedicine-based commercial formulations: current developments and future prospects. J Pharm Investig. 2023;53(1):19–33. doi: 10.1007/s40005-022-00607-6.
  • Metkar S, Girigoswami K. Diagnostic biosensors in medicine—a review. Biocatal Agric Biotechnol. 2019;17:271–283. doi: 10.1016/j.bcab.2018.11.029.
  • Abu-Salah KM, Alrokyan SA, Khan MN, et al. Nanomaterials as analytical tools for genosensors. Sensors (Basel). 2010;10(1):963–993. doi: 10.3390/s100100963.
  • Bordbar MM, Tashkhourian J, Hemmateenejad B. Structural elucidation and ultrasensitive analyses of volatile organic compounds by paper-based nano-optoelectronic noses. ACS Sens. 2019;4(5):1442–1451. doi: 10.1021/acssensors.9b00680.
  • Bordbar MM, Barzegar H, Tashkhourian J, et al. A non-invasive tool for early detection of acute leukemia in children using a paper-based optoelectronic nose based on an array of metallic nanoparticles. Anal Chim Acta. 2021;1141:28–35. doi: 10.1016/j.aca.2020.10.029.
  • Lubes G, Goodarzi M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J Pharm Biomed Anal. 2018;147:313–322. doi: 10.1016/j.jpba.2017.07.013.
  • Tang H, Lu Y, Zhang L, et al. Determination of volatile organic compounds exhaled by cell lines derived from hematological malignancies. Biosci Rep. 2017;37(3):BSR20170106. doi: 10.1042/bsr20170106.
  • Thevendran R, Foo KL, Hussin MH, et al. Reverse electrochemical sensing of FLT3-ITD mutations in acute myeloid leukemia using gold sputtered ZnO-Nanorod configured DNA biosensors. Biosensors (Basel). 2022;12(3):170. doi: 10.3390/bios12030170.
  • Mayerhoefer ME, Archibald SJ, Messiou C, et al. MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging. 2020;51(5):1325–1335. doi: 10.1002/jmri.26848.
  • Dinani HS, Pourmadadi M, Yazdian F, et al. Fabrication of Au/Fe(3)O(4)/RGO based aptasensor for measurement of miRNA-128, a biomarker for acute lymphoblastic leukemia (ALL). Eng Life Sci. 2022;22(8):519–534. doi: 10.1002/elsc.202100170.
  • Ye M, Chen Y, Wang Y, et al. Subtype discrimination of acute myeloid leukemia based on plasma SERS technique. Spectrochim Acta A Mol Biomol Spectrosc. 2022;271:120865. doi: 10.1016/j.saa.2022.120865.
  • Đorđević S, Gonzalez MM, Conejos-Sánchez I, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res. 2022;12(3):500–525. doi: 10.1007/s13346-021-01024-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.