230
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Antimicrobial polyacrylic acid/tannic acid hydrogel wound dressing facilitating full-thickness skin healing

, , , , &
Pages 501-518 | Received 13 Sep 2023, Accepted 26 Dec 2023, Published online: 10 Jan 2024

References

  • Murdoch I, Turpin S, Johnston B, et al. Skin trauma. John Wiley & Sons, Ltd.; 2014.
  • Hutchinson JJ, Lawrence JC. Wound infection under occlusive dressings. J Hosp Infect. 1991;17(2):83–94. doi: 10.1016/0195-6701(91)90172-5.
  • Landis SJ. Chronic wound infection and antimicrobial use. Adv Skin Wound Care. 2008;21(11):531–540. doi: 10.1097/01.asw.0000323578.87700.a5.
  • Barajas-Nava LA, López-Alcalde J, Figuls M, et al. Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst Rev. 2013;6(6):CD008738. doi: 10.1002/14651858.cd008738.pub2.
  • Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91–96. doi: 10.1097/00001432-200404000-00004.
  • Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/cmr.00134-14.
  • Zhang CH, Song XM, He YL, et al. Use of absorbable hemostatic gauze with medical adhesive is effective for achieving hemostasis in presacral hemorrhage. Am J Surg. 2012;203(4):e5–e8. doi: 10.1016/j.amjsurg.2010.06.026.
  • Hickman D, Pawlowski CL, Sekhon U, et al. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv Mater. 2018;30(4):1700859. doi: 10.1002/adma.201700859.
  • Luigi S, Marina DD, Monica M, et al. Antibiotic resistance and microbiota response. Curr Pharm Des. 2023;29(5):356–364. doi: 10.2174/1381612829666221219093450.
  • Yang J, Zhang Y, Zhao J, et al. Development of gold nanoparticles-aptamer nanocomposite for multiplexed analysis of antibiotics and design of molecular logic gates. Nanotechnology. 2022;33(1):015501. doi: 10.1088/1361-6528/ac2c41.
  • Aboud S, Samanga G, Read JS, et al. Effect of prenatal and perinatal antibiotics on maternal health in Malawi, Tanzania, and Zambia. Int J Gynaecol Obstet. 2009;107(3):202–207. doi: 10.1016/j.ijgo.2009.07.037.
  • Ong SY, Wu J, Moochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323–4332. doi: 10.1016/j.biomaterials.2008.07.034.
  • Feng C, Xu L, Dai JL, et al. N, O-carboxymethyl chitosan/oxidized cellulose composite sponge containing ε-Poly-L-Lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int J Biol Macromol. 2022;209(Pt B):2151–2164. doi: 10.1016/j.ijbiomac.2022.04.195.
  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–337. doi: 10.1016/j.biotechadv.2011.01.005.
  • Cullen B, Watt PW, Lundqvist C, et al. The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol. 2002;34(12):1544–1556. doi: 10.1016/s1357-2725(02)00054-7.
  • Posadowska U, Brzychczy-Włoch M, Drożdż A, et al. Injectable hybrid delivery system composed of gellan gum, nanoparticles and gentamicin for the localized treatment of bone infections. Expert Opin Drug Deliv. 2016;13(5):613–620. doi: 10.1517/17425247.2016.1146673.
  • Pang Q, Lou D, Li S, et al. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv Sci (Weinh). 2020;7(6):1902673. doi: 10.1002/advs.201902673.
  • Wang JH, Chen XY, Zhao Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano. 2019;13(10):11686–11697. doi: 10.1021/acsnano.9b05608.
  • Zhao X, Liang YP, Huang Y, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater. 2020;30(17):1910748. doi: 10.1002/adfm.201910748.
  • Zhang ZX, Wang L, Yu HT, et al. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl Mater Interf. 2020;12(13):15657–15666. doi: 10.1021/acsami.9b22707.
  • Lee Y, Bae JW, Oh DH, et al. In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. J Mater Chem B. 2013;1(18):2407–2414. doi: 10.1039/c3tb00578j.
  • Portela R, Leal CR, Almeida PL, et al. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol. 2019;12(4):586–610. J doi: 10.1111/1751-7915.13392.
  • Zhang X, Yao D, Zhao W, et al. Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value. Adv Funct Mater. 2021;31(8):2009258. doi: 10.1002/adfm.202009258.
  • Cao J, Wu P, Cheng Q, et al. Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing. ACS Appl Mater Interf. 2021;13(20):24095–24105. doi: 10.1021/acsami.1c02089.
  • Qiu X, Zhang J, Cao L, et al. Antifouling antioxidant zwitterionic dextran hydrogels as wound dressing materials with excellent healing activities. ACS Appl Mater Interf. 2021;13(6):7060–7069. doi: 10.1021/acsami.0c17744.
  • Barry RA, III, Shepherd RF, Hanson JN, et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv Mater. 2009;21(23):2407–2410. doi: 10.1002/adma.200803702.
  • Guvendiren M, Burdick JK. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials. 2010;31(25):6511–6518. doi: 10.1016/j.biomaterials.2010.05.037.
  • Lin CC. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Adv. 2015;5(50):39844–398583. doi: 10.1039/c5ra05734e.
  • Bu Y, Zhang L, Sun G, et al. Tetra-PEG based hydrogel sealants for in vivo visceral hemostasis. Adv Mater. 2019;31(28):e1901580. doi: 10.1002/adma.201901580.
  • Cretu A, Castagnino P, Assoian R. Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels. JoVE. 2010;42(42):1–5. doi: 10.3791/2089.
  • Coyne KJ, Qin XX, Waite JH. Extensible collagen in mussel byssus: a natural block copolymer. Science. 1997;277(5333):1830–1832. doi: 10.1126/science.277.5333.1830.
  • Lin Q, Gourdon D, Sun C, et al. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA. 2007;104(10):3782–3786. doi: 10.1073/pnas.0607852104.
  • Silverman HG, Roberto FF. Understanding marine mussel adhesion. Mar Biotechnol (NY). 2007;9(6):661–681. doi: 10.1007/s10126-007-9053-x.
  • Waite JH, Qin XX, Coyne KJ. The peculiar collagens of mussel byssus. Matrix Biol. 1998;17(2):93–106. doi: 10.1016/s0945-053x(98)90023-3.
  • Li HB, Feng C, Wei XJ, et al. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater Sci Eng C Mater Biol Appl. 2021;118:111324. doi: 10.1016/j.msec.2020.111324.
  • Yan J, Ji Y, Huang M, et al. Nucleobase-inspired self-adhesive and inherently antibacterial hydrogel for wound dressing. ACS Mater Lett. 2020;2(11):1375–1380. doi: 10.1021/acsmaterialslett.0c00304.
  • Ryu JH, Lee Y, Kong WH, et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules. 2011;12(7):2653–2659. doi: 10.1021/bm200464x.
  • Brubaker CE, Kissler H, Wang LJ, et al. Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials. 2010;31(3):420–427. doi: 10.1016/j.biomaterials.2009.09.062.
  • Zhang K, Wei Z, Xu X, et al. Efficient catechol functionalization of biopolymeric hydrogels for effective multiscale bio-adhesion. Mater Sci Eng C Mater Biol Appl. 2019;103:109835. doi: 10.1016/j.msec.2019.109835.
  • Park HJ, Jin Y, Shin J, et al. Catechol-functionalized hyaluronic acid hydrogels enhance angiogenesis and osteogenesis of human adipose-derived stem cells in critical tissue defects. Biomacromolecules. 2016;17(6):1939–1948. doi: 10.1021/acs.biomac.5b01670.
  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115. doi: 10.1021/cr400407a.
  • Han L, Wang M, Li P, et al. Mussel-inspired tissue-adhesive hydrogel based on the polydopamine–chondroitin sulfate complex for growth-factor-free cartilage regeneration. ACS Appl Mater Interf. 2018;10(33):28015–28026. doi: 10.1021/acsami.8b05314.
  • Shin J, Lee JS, Lee C, et al. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv Funct Mater. 2015;25(25):3814–3824. doi: 10.1002/adfm.201500006.
  • Yu J, Wang K, Fan C, et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv Mater. 2021;33(16):e2008395. doi: 10.1002/adma.202008395.
  • Andrea M. General considerations on the formation of tissues and organs. Folha Med. 1948;29(17):118–121.
  • Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30(12):3875–3883. doi: 10.1016/0031-9422(91)83426-l.
  • Farha AK, Yang QQ, Kim G, et al. Tannins as an altemative to antibiotics. Food Biosci. 2020;38:100751. doi: 10.1016/j.fbio.2020.100751.
  • López CM, Pich A. Supramolecular stimuli-responsive microgels crosslinked by tannic acid. Macromol Rapid Commun. 2018;39(6):1700808. doi: 10.1002/marc.201700808.
  • Zheng L, Shi J, Chi Y. Tannic acid physically cross-linked responsive hydrogel. Macro Chem Phys. 2018;219(19):1800234. doi: 10.1002/macp.201800234.
  • Li P, Poon YF, Li W, et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater. 2011;10(2):149–156. doi: 10.1038/nmat2915.
  • Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193(4812):293–294. J doi: 10.1038/193293a0.
  • Ulubayram K, Cakar AN, Korkusuz P, et al. EGF containing gelatin-based wound dressings. Biomaterials. 2001;22(11):1345–1356. doi: 10.1016/s0142-9612(00)00287-8.
  • Carrejo NC, Moore AN, Lopez Silva TL, et al. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater Sci Eng. 2018;4(4):1386–1396. doi: 10.1021/acsbiomaterials.8b00031.
  • Griffin DR, Archang MM, Kuan C, et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat Mater. 2021;20(4):560–569. doi: 10.1038/s41563-020-00844-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.