102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of pH-responsive polyurethane nano micelles and their antibacterial application

, , , &
Pages 519-534 | Received 14 Dec 2023, Accepted 29 Dec 2023, Published online: 24 Jan 2024

References

  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/s0140-6736(21)02724-0.
  • Du Toit A. The cost of resistance. Nat Rev Microbiol. 2022;20(6):317–317. doi: 10.1038/s41579-022-00733-w.
  • Rawson TM, Antcliffe DB, Wilson RC, et al. Management of vacterial and fungal infections in the ICU: diagnosis, treatment, and prevention recommendations. Infect Drug Resist. 2023;16:2709–2726. doi: 10.2147/idr.s390946.
  • Wang Z, Liu XY, Duan YW, et al. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials. 2022;280:121249. doi: 10.1016/j.biomaterials.2021.121249.
  • Lin HC, Wu YL, Hsu CY, et al. Discovery of antipsychotic loxapine derivatives against intracellular multidrug-resistant bacteria. RSC Med Chem. 2022;13(11):1361–1366. doi: 10.1039/d2md00182a.
  • Modi SK, Gaur S, Sengupta M, et al. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol. 2023;14:1135579. doi: 10.3389/fmicb.2023.1135579.
  • Cesaro A, Lin SZ, Pardi N, et al. Advanced delivery systems for peptide antibiotics. Adv Drug Deliv Rev. 2023;196:114733. doi: 10.1016/j.addr.2023.114733.
  • van Gent ME, Ali M, Nibbering PH, et al. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics. 2021;13(11):1840. doi: 10.3390/pharmaceutics13111840.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663. doi: 10.1021/acs.chemrev.5b00346.
  • Zhang Y, Kim I, Lu Y, et al. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release. 2022;349:963–982. doi: 10.1016/j.jconrel.2022.08.005.
  • Wang H, Li S, Wang L, et al. Functionalized biological metal–organic framework with nanosized coronal structure and hierarchical wrapping pattern for enhanced targeting therapy. Chem Eng J. 2023;456:140963. doi: 10.1016/j.cej.2022.140963.
  • Farokh A, Pourmadadi M, Rashedi H, et al. Assessment of synthesized chitosan/halloysite nanocarrier modified by carbon nanotube for pH-sensitive delivery of curcumin to cancerous media. Int J Biol Macromol. 2023;237:123937. doi: 10.1016/j.ijbiomac.2023.123937.
  • Amin M, Lammers T, ten Hagen TLM. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: towards bypassing EPR. Adv Drug Deliv Rev. 2022;189:114503. doi: 10.1016/j.addr.2022.114503.
  • Zhang C, Li JX, Xiao M, et al. Oral Colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy. Chin Chem Lett. 2022;33(11):4924–4929. doi: 10.1016/j.cclet.2022.03.110.
  • Huang Y, Tang Z, Zhang X, et al. pH-triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: preparation and in vitro evaluation. Biomacromolecules. 2013;14(6):2023–2032. doi: 10.1021/bm400358z.
  • Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. Nat Mater. 2013;12(11):1004–1017. doi: 10.1038/nmat3758.
  • Liu T, Du Y, Yan Y, et al. pH-responsive dual-functional hydrogel integrating localized delivery and anti-cancer activities for highly effective therapy in PDX of OSCC. Mater Today. 2023;62:71–97. doi: 10.1016/j.mattod.2022.12.009.
  • Dissemond J, Witthoff M, Brauns TC, et al. pH values in chronic wounds. Evaluation during modern wound therapy. Hautarzt. 2003;54(10):959–965. doi: 10.1007/s00105-003-0554-x.
  • Deng M, Zhang M, Huang R, et al. Diabetes immunity-modulated multifunctional hydrogel with Cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials. 2022;289:121790. doi: 10.1016/j.biomaterials.2022.121790.
  • Gref R, Lück M, Quellec P, et al. Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) AND of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3-4):301–313. doi: 10.1016/s0927-7765(99)00156-3 10915952
  • Rabanel JM, Hildgen P, Banquy X. Assessment of PEG ON polymeric particles surface, a key step in drug carrier translation. J Control Release. 2014;185:71–87. doi: 10.1016/j.jconrel.2014.04.017 24768790
  • Xie FW, Zhang TL, Bryant P, et al. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci. 2019;90:211–268. doi: 10.1016/j.progpolymsci.2018.12.003.
  • Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater. 2021;6(4):1083–1106. doi: 10.1016/j.bioactmat.2020.10.002.
  • Su Y, Zhao L, Meng F, et al. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles. Colloids Surf B Biointerfaces. 2017;152:238–244. doi: 10.1016/j.colsurfb.2017.01.036.
  • Jiang CY, Zhang LZ, Yang Q, et al. Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nat Commun. 2021;12(1):4395. doi: 10.1038/s41467-021-24680-x.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012.
  • Shi D, Beasock D, Fessler A, et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079. doi: 10.1016/j.addr.2021.114079.
  • Ruan C, Wang Y, Zhang M, et al. Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(D,L-lactic acid) diol, hexamethylene diisocyanate and piperazine. Polym Int. 2012;61(4):524–530. doi: 10.1002/pi.3197.
  • He W, Zheng X, Zhao Q, et al. pH-triggered charge-reversal polyurethane micelles for controlled release of doxorubicin. Macromol Biosci. 2016;16(6):925–935. doi: 10.1002/mabi.201500358.
  • Othman R, Vladisavljević GT, Thomas NL, et al. Fabrication of composite poly(D,L-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics. Colloids Surf B Biointerfaces. 2016;141:187–195. doi: 10.1016/j.colsurfb.2016.01.042.
  • Kou Z, Dou D, Mo H, et al. Preparation and application of a polymer with pH/temperature-responsive targeting. Int J Biol Macromol. 2020;165(Pt A):995–1001. doi: 10.1016/j.ijbiomac.2020.09.248.
  • Zhang M, Zeng G, Liao X, et al. An antibacterial and biocompatible piperazine polymer. RSC Adv. 2019;9(18):10135–10147. doi: 10.1039/c9ra02219h.
  • Liu Y, Moore JH, Kolling GL, et al. Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion. Sens Actuators, B. 2020;312:127936. doi: 10.1016/j.snb.2020.127936.
  • Xu H, Yao Q, Cai C, et al. Amphiphilic poly(amino acid) based micelles applied to drug delivery: the in vitro and in vivo challenges and the corresponding potential strategies. J Control Release. 2015;199:84–97. doi: 10.1016/j.jconrel.2014.12.012.
  • Cai X, Yang W, Huang L, et al. A series of sensitive and visible fluorescence-turn-on probes for CMC of ionic surfactants: design, synthesis, structure influence on CMC and sensitivity, and fast detection via a plate reader and a UV light. Sens Actuators, B. 2015;219:251–260. doi: 10.1016/j.snb.2015.04.126.
  • Zhu D, Yan H, Zhou Y, et al. Design of disintegrable nanoassemblies to release multiple small-sized nanoparticles. Adv Drug Deliv Rev. 2023;197:114854. doi: 10.1016/j.addr.2023.114854.
  • Ma T, Chen R, Lv NN, et al. Size-transformable bicomponent peptide nanoparticles for deep tumor penetration and photo-chemo combined antitumor therapy. Small. 2022;18(7):e2106291. doi: 10.1002/smll.202106291.
  • Liu M, Li J, Zhao D, et al. Branched PEG-modification: a new strategy for nanocarriers to evade of the accelerated blood clearance phenomenon and enhance anti-tumor efficacy. Biomaterials. 2022;283:121415. doi: 10.1016/j.biomaterials.2022.121415.
  • Wang ST, Fang Y, Zhang ZQ, et al. Bacterial infection microenvironment sensitive prodrug micelles with enhanced photodynamic activities for infection control. Colloid Interface Sci Commun. 2021;40:100354. doi: 10.1016/j.colcom.2020.100354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.