204
Views
12
CrossRef citations to date
0
Altmetric
Articles

Diamond-shaped hole array in double-layer metal sheets for negative index of refraction

&
Pages 413-420 | Received 18 Jul 2012, Accepted 24 Oct 2012, Published online: 27 Nov 2012

References

  • Engheta N, Ziolkowski RW. Metamaterials: physics and engineering explorations. Piscataway (NJ): Wiley & Sons; 2006..
  • Grzegorczyk, TM, and Kong, JA, 2006. Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications, J. Electromagn. Waves Appl. 20 (2006), pp. 2053–2064.
  • Ran, L-X, Huang-Fu, JT, Chen, H, Zhang, X-M, Cheng, K-S, Grzegorczyk, TM, and Kong, JA, 2005. Experimental study on several left-handed metamaterials, Prog. Electromagn. Res. 51 (2005), pp. 249–279.
  • Chen, HS, Ran, LX, Huangfu, JT, Zhang, ZM, and Chan, KS, 2005. Magnetic properties of S-shaped split-ring resonators, Prog. Electromagn. Res. 51 (2005), pp. 231–247.
  • Sabah, C, Cakmak, AO, Ozbay, E, and Uckun, S, 2010. Transmission measurement of a new metamaterial sample with negative refraction index, Physica B: Condens. Matter. 405 (2010), pp. 2955–2958.
  • Sabah, C, 2011. Multiband planar metamaterials, Microwave Optical Technol. Lett. 53 (2011), pp. 2255–2258.
  • Ourir, A, Abdeddaim, R, and de Rosny, J, 2010. Tunable trapped mode in symmetric resonator designed for metamaterials, Prog. Electromagn. Res. 101 (2010), pp. 115–123.
  • Oraizi, H, Abdolali, A, and Vaseghi, N, 2010. Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section, Prog. Electromagn. Res. 101 (2010), pp. 323–337.
  • Choi, J, and Seo, C, 2010. High efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial, Prog. Electromagn. Res. 106 (2010), pp. 33–47.
  • Li, M, Yang, H-L, Hou, X-W, Tian, Y, and Hou, D-Y, 2010. Perfect metamaterial absorber with dual bands, Prog. Electromagn. Res. 108 (2010), pp. 37–49.
  • Huang, L, and Chen, H, 2011. Multi-band and polarization insensitive metamaterial absorber, Prog. Electromagn. Res. 113 (2011), pp. 103–110.
  • Liu, SH, and Guo, L-X, 2011. Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface, Prog. Electromagn. Res. 115 (2011), pp. 243–257.
  • Li, J, Yang, F-Q, and Dong, J, 2011. Design and simulation of L-shaped chiral negative refractive index structure, Prog. Electromagn. Res. 116 (2011), pp. 395–408.
  • Canto, JR, Paiva, CR, and Barbosa, AM, 2011. Dispersion and losses in surface waveguides containing double negative or chiral metamaterials, Prog. Electromagn. Res. 116 (2011), pp. 409–423.
  • Giamalaki, MI, and Karanasiou, IS, 2011. Enhancement of a microwave radiometry imaging system's performance using left handed materials, Prog. Electromagn. Res. 117 (2011), pp. 253–265.
  • Xu, S, Yang, L, Huang, L, and Chen, H, 2011. Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials, Prog. Electromagn. Res. 120 (2011), pp. 327–337.
  • Duan, Z, Wang, Y, Mao, X, Wang, W-X, and Chen, M, 2011. Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide, Prog. Electromagn. Res. 121 (2011), pp. 215–224.
  • Sabah C. Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Appl. Phys. A: Mater. Sci. Process. 2012;108:457–463..
  • Sabah C. Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators. J. Electromagn. Waves Appl. 2012;26:1105–1115..
  • Sabah, C., Multiband metamaterials based on multiple concentric open ring resonators topology. IEEE J. Selected Topics Quant. Electron. 2012. doi:10.1109/JSTQE.2012.2193875..
  • Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 2005;95:137404.1–137404.4..
  • Navarro-Cia, M, Torres, V, Beruete, M, and Sorolla, M, 2011. A slow light fishnet-like absorber in the millimeter-wave range, Prog. Electromagn. Res. 118 (2011), pp. 287–301.
  • Sabah C, Roskos HG. Numerical and experimental investigation of fishnet-based metamaterial in a X-band waveguide. J. Phys. D: Appl. Phys. 2011;44:255101.1–255101.5..
  • Cao, T, and Cryan, MJ, 2012. Modeling of optical trapping using double negative index fishnet metamaterials, Prog. Electromagn. Res. 129 (2012), pp. 33–49.
  • Zaoui WS, Chen K, Vogel W, Berroth M. Low loss broadband polarization independent fishnet negative index metamaterial at 40 GHz. Photon. Nanostruct. Fundamentals Appl. 2012;10:245–250..
  • Huang Z, Xue J, Hou Y, Chu J, Zhang DH. Optical magnetic response from parallel plate metamaterials. Phys. Rev. B. 2006;74:193105.1–193105.4..
  • Kafesaki M, Tsiapa I, Katsarakis N, Koschny Th, Soukoulis CM, Economou EN. Left-handed metamaterials: the fishnet structure and its variations. Phys. Rev. B. 2007;75:235114.1–235114.9..
  • Sabah, C, and Roskos, HG, 2012. Dual-band polarization-independent sub-terahertz fishnet metamaterial, Curr. Appl. Phys. 12 (2012), pp. 443–450.
  • Nicolson, AM, and Ross, G, 1970. Measurement of the intrinsic properties of materials by time domain techniques, IEEE Trans. Instrum. Measure. 19 (1970), pp. 377–382.
  • Weir, WB, 1974. Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE 62 (1974), pp. 33–36.
  • Ghodgaonkar, DK, Varadan, VV, and Varadan, VK, 1990. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies, IEEE Trans. Instrum. Measure. 39 (1990), pp. 387–394.
  • Ziolkowski, RW, 2003. Design, fabrication, and testing of double negative metamaterials, IEEE Trans. Antennas Propagat. 51 (2003), pp. 1516–1529.
  • Chen X, Grzegorczyk TM, Wu B-I, Pacheco J, Kong JA. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E. 2004;70:016608.1–016608.7..
  • Smith DR, Vier DC, Koschny T, Soukoulis CM. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E. 2005;71:036617.1–036617.11..
  • Koschny T, Markos P, Smith DR, Soukoulis CM. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E. 2003;68:065602.1–065602.4..
  • Zhou J, Koschny T, Kafesaki M, Soukoulis CM. Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev. B. 2009;80:035109.1–035109.6..
  • Alici, KB, and Ozbay, E, 2010. Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples, IEEE J. Selected Topics Quant. Electron. 16 (2010), pp. 386–393.
  • Ziolkowski, RW, 2006. Metamaterial-based source and scattering enhancements: from microwave to optical frequencies, Opto-Electron. Rev. 14 (2006), pp. 167–177.
  • Sabah, C, 2012. Microwave response of octagon-shaped parallel plates: low-loss metamaterial, Optics Commun. 285 (2012), pp. 4549–4552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.