99
Views
3
CrossRef citations to date
0
Altmetric
Articles

Transforming complex space: a general strategy to compensate loss of transformation optical media

&
Pages 834-845 | Received 03 Jan 2013, Accepted 21 Mar 2013, Published online: 15 Apr 2013

References

  • Pendry, JB, Schurig, D, and Smith, DR, 2006. Controlling electromagnetic fields, Science. 312 (2006), pp. 1780–1782.
  • Leonhardt, U, 2006. Optical conformal mapping, Science. 312 (2006), pp. 1777–1780.
  • Yan, M, Yan, W, and Qiu, M, 2009. Invisibility cloaking by coordinate transformation, Prog. Opt. 52 (2009), pp. 261–304.
  • Schurig, D, Pendry, JB, and Smith, DR, 2006. Calculation of material properties and ray tracing in transformation media, Opt. Express. 14 (2006), pp. 9794–9804.
  • Wang, S-Y, Liu, S-B, Dai, G-L, Li, X-A, and Yang, J-P, 2012. Simplified N-sided irregular polygonal ground plane cloak created with oblique layered isotropic dielectrics, J. Electromagn. Waves Appl. 26 (2012), pp. 75–88.
  • Cheng, XX, Chen, HS, and Zhang, XM, 2010. Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system, Prog. Electromagn. Res. 100 (2010), pp. 285–298.
  • Zhang, J, and Mortensen, NA, 2011. Ultrathin cylindrical cloak, Prog. Electromagn. Res. 121 (2011), pp. 381–389.
  • Agarwal, K, Chen, X, Hu, L, Liu, H, and Uhlmann, G, 2011. Polarization-invariant directional cloaking by transformation optics, Prog. Electromagn. Res. 118 (2011), pp. 415–423.
  • Chen, X, 2011. Implicit boundary conditions in transformation-optics cloaking for electromagnetic waves, Prog. Electromagn. Res. 121 (2011), pp. 521–534.
  • Li, JZ, and Liu, HY, 2012. A class of polarization-invariant directional cloaks by concatenation via transformation optics, Prog. Electromagn. Res. 123 (2012), pp. 175–187.
  • Luo, Y, Chen, HS, Zhang, JJ, Ran, LX, and Kong, JA, 2008. Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations, Phys. Rev. B. 77 (2008), p. 125127.
  • Lai, Y, Ng, J, Chen, HY, Han, DZ, Xiao, JJ, Zhang, ZQ, and Chan, CT, 2009. Illusion optics: the optical transformation of an object into another object, Phys. Rev. Lett. 102 (2009), p. 253902.
  • Li, W, Guan, JG, Wang, W, Sun, ZG, and Fu, ZY, 2010. A general cloak to shift the scattering of different objects, J. Phys. D Appl. Phys. 43 (2010), p. 245102.
  • Mei, ZL, Bai, J, and Cui, TJ, 2010. Illusion devices with quasi-conformal mapping, J. Electromagn. Waves Appl. 24 (2010), pp. 2561–2573.
  • Cojocaru, E, 2010. Illusion devices with internal or external circular objects designed by the coordinate transformation method, J. Electromagn. Waves Appl. 24 (2010), pp. 2309–2317.
  • Wang, X, Qu, S, Ma, H, Wang, J, Lu, L, Xu, Z, and Huang, D, 2011. Displacement cloak: rendering an object into a bigger illusion elsewhere, J. Electromagn. Waves Appl. 25 (2011), pp. 1372–1381.
  • Zhu, W, Remaratne, MP, and Huang, Y, 2012. Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials, J. Electromagn. Waves Appl. 26 (2012), pp. 2315–2322.
  • Liu, R, Ji, C, Mock, JJ, Chin, JY, Cui, TJ, and Smith, DR, 2009. Broadband ground-plane cloak, Science. 323 (2009), pp. 366–369.
  • Schurig, D, Mock, JJ, Justice, BJ, Cummer, SA, Pendry, JB, Starr, AF, and Smith, DR, 2006. Metamaterial electromagnetic cloak at microwave frequencies, Science. 314 (2006), pp. 977–980.
  • Valentine, J, Li, J, Zentgraf, T, Bartal, G, and Zhang, X, 2009. An optical cloak made of dielectrics, Nat. Mater. 8 (2009), pp. 568–571.
  • Ma, HF, and Cui, TJ, 2010. Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1 (2010), p. 21.
  • Chen, HS, Wu, BI, Zhang, BL, and Kong, JA, 2007. Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett. 99 (2007), p. 063903.
  • Cummer, SA, Popa, BI, Schurig, D, Smith, DR, and Pendry, JB, 2006. Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E. 74 (2006), p. 036621.
  • Zhang, BL, Chen, HS, and Wu, BI, 2009. Practical limitations of an invisibility cloak, Prog. Electromagn. Res. 97 (2009), pp. 407–416.
  • Hashemi, H, Zhang, BL, Joannopoulos, JD, and Johnson, SG, 2010. Delay-bandwidth and delay-loss limitations for cloaking of large objects, Phys. Rev. Lett. 104 (2010), p. 253903.
  • Lagarkov, AN, Kisel, VN, and Sarychev, AK, 2010. Loss and gain in metamaterials, J. Opt. Soc. Am. B. 27 (2010), pp. 648–659.
  • Govyadinov, AA, Podolskiy, VA, and Noginov, MA, 2007. Active metamaterials: sign of refractive index and gain-assisted dispersion management, Appl. Phys. Lett. 91 (2007), p. 191103.
  • Klimov, VI, Mikhailovsky, AA, Xu, S, Malko, A, Hollingsworth, JA, Leatherdale, CA, Eisler, HJ, and Bawendi, MG, 2000. Optical gain and stimulated emission in nanocrystal quantum dots, Science. 290 (2000), pp. 314–317.
  • Shank, CV, 1975. Physics of dye lasers, Rev. Mod. Phys. 47 (1975), pp. 649–657.
  • Anantha, RS, and Pendry, JB, 2003. Removal of absorption and increase in resolution in a near-field lens via optical gain, Phys. Rev. B. 67 (2003), p. 201101.
  • Wuestner, S, Pusch, A, Tsakmakidis, KL, Hamm, JM, and Hess, O, 2010. Overcoming losses with gain in a negative refractive index metamaterial, Phys. Rev. Lett. 105 (2010), p. 127401.
  • Hamm, JM, Wuestner, S, Tsakmakidis, KL, and Hess, O, 2011. Theory of light amplification in active fishnet metamaterials, Phys. Rev. Lett. 107 (2011), p. 167405.
  • Pusch, A, Wuestner, S, Hamm, JM, Tsakmakidis, KL, and Hess, O, 2012. Coherent Amplification and noise in gain-enhanced nanoplasmonic metamaterials: a maxwell-bloch langevin approach, ACS Nano. 6 (2012), p. 2420.
  • Hess, O, Pendry, JB, Maier, SA, Oulton, RF, Hamm, JM, and Tsakmakidis, KL, 2012. Active nanoplasmonic metamaterials, Nat. Mater. 11 (2012), pp. 573–584.
  • Han, T, Qiu, CW, Hao, J, Tang, X, and Zouhdi, S, 2011. Gain-assisted transformation optics, Opt. Express. 19 (2011), pp. 8610–8615.
  • Novitsky, A, Qiu, CW, and Zouhdi, S, 2009. Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization, New J. Phys. 11 (2009), p. 113001.
  • Chew, WC, Jin, JM, and Michielssen, E, 1997. Complex coordinate stretching as a generalized absorbing boundary condition, Microwave Opt. Technol. Lett. 15 (1997), pp. 363–369.
  • Chen, HY, and Chan, CT, 2008. Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B. 78 (2008), p. 054204.
  • Campione, S, and Capolino, F, 2012. Composite material made of plasmonic nanoshells with quantum dot cores: loss-compensation and ϵ-near-zero physical properties, Nanotechnology. 23 (2012), p. 235703.
  • Leners, R, Francois, PL, and Stephan, G, 1994. Simultaneous effects of gain and loss anisotropies on the thresholds of a bipolarization fiber laser, Opt. Lett. 19 (1994), pp. 275–277.
  • Visser, TD, Blok, H, and Lenstra, D, 1999. Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses, IEEE J. Quantum Electron. 35 (1999), p. 240.
  • Boardman, AD, Grimalsky, VV, Kivshar, YS, Koshevaya, SV, Lapine, M, Litchinitser, NM, Malnev, VN, Noginov, M, Rapoport, YG, and Shalaev, VM, 2011. Active and tunable metamaterials, Laser Photon. Rev. 5 (2011), pp. 287–307.
  • Boardman, AD, Rapoport, YG, King, N, and Malnev, VN, 2007. Creating stable gain in active metamaterials, J. Opt. Soc. Am. B. 24 (2007), pp. A53–A61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.