226
Views
8
CrossRef citations to date
0
Altmetric
Articles

Performance improvement of helix TWT using metamaterial helix-support structure

&
Pages 890-900 | Received 01 Jan 2013, Accepted 24 Mar 2013, Published online: 23 Apr 2013

References

  • Duan, ZY, Wu, BI, Xi, S, Chen, HS, and Chen, M, 2009. Research progress in reversed Cherenkov radiation in double negative metamaterials, Prog. Electromagn. Res. PIER 90 (2009), pp. 75–87.
  • Withawat Withayachumnankul and Derek Abbott, Survey of terahertz metamaterial devices. In: Proceedings of SPIE Smart Structures Devices and Systems IV, Vol. 7270; 2008 Dec 10; Melbourne, Australia. Art. no. 72681Z..
  • Anantha Ramakrishna, S, 2005. Physics of negative refractive index materials. Institute of Physics Publishing, Rep. Prog. Phys. 68 (2005), pp. 449–521.
  • Veselago, VG, 1968. The electrodynamics of substances with simultaneously negative values of ϵ and μ, Sov. Phys. 10 (1968), pp. 509–514.
  • Ekmekci E, Averitt RD, Turhan-Sayan G. Effect of substrate parameters on the resonanace frequency of double-sided SRR structures under two different excitations. In: Symposium Proceedings of the Progress in Electromagnetic Research; 2010 Jul; Cambridge, MA, USA. p. 538–540..
  • Marques, R, Martel, J, Mesa, F, and Medina, F, 2002. A new 2D isotropic left-handed metamaterial design: theory and experiment, Microwave and Optical Technology Letters 35 (2002), pp. 405–408.
  • Marques, R, Mesa, F, Martel, J, and Medina, F, 2003. Comparative analysis of edge – and broadside – coupled split ring resonators for metamaterial design – theory and experiments, IEEE Trans. Antennas Propag. 51 (2003), pp. 2572–2581.
  • Lubkowski G, Hirtenfelder F, Schuhmann R, Weiland T. 3D Full-wave field simulations of double negative metamaterial macrostructures. In: Proceedings of Metamaterials; 2007 Oct 22–24; Rome..
  • Engheta, N, and Ziolkowski, RW, 2005. A positive future for double-negative metamaterials, IEEE Trans. MTT. 53 (2005), pp. 1535–1556.
  • Pendry, JB, Holden, AJ, Stewart, WJ, and Youngs, I, 1996. Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (1996), pp. 4773–4776.
  • Pendry, JB, Holden, AJ, Robbins, DJ, and Stewart, WJ, 1999. Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. MTT. 47 (1999), pp. 2075–2084.
  • Smith, DR, Padilla, WJ, Vier, DC, Nemat-Nasser, SC, and Schultz, S, 2001. Composite media with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2001), pp. 4184–4187.
  • Caloz, C, and Itoh, T, 2006. Electromagnetic metamaterials: transmission line theory and microwave applications the engineering approach. Hoboken, NJ: John Wiley; 2006.
  • Capolino, F., 2009. Metamaterials handbook: applications of metamaterials. CRC Press, Taylor & Francis Group; 2009.
  • Engheta, N, 2002. An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wirel. Propag. Lett. 1 (2002), pp. 10–13.
  • Hrabar, S, Bartolic, J, and Sipus, Z, 2005. Waveguide miniaturisation using uniaxial negative permeability medium, IEEE Trans. Antennas Propag. 53 (2005), pp. 110–119.
  • He, P, Parimi, PV, He, Y, Harris, VG, and Vittoria, C, 2007. Tunable negative refractive index metamaterial phase shifter, Electron. Lett. 43 (2007), pp. 1440–1441.
  • David P. Starinshak, Jeffrey D. Wilson, Investigating dielectric and metamaterial effects in a terahertz traveling-wave tube amplifier. Glenn Research Center, NASA; 2008 Feb; NASA/TM-2008-215059..
  • David P. Starinshak, Jeffrey D. Wilson, Using COMSOL multiphysics software to model anistotropic dielectric and metamaterial effects in folded-waveguide traveling-wave tube slow-wave circuits. Glenn Research Center, NASA; 2008 Jul; NASA/TM-2008-215267..
  • Tan YS, Seviour R. Wave energy amplification in a metamaterial based travelling wave structure. EPL. 2010;87:34005.
  • Datta SK, Kumar L, Basu B. Investigation into a metamaterial supported helix slow-wave structure. In: Conference Proceedings on the International Vacuum Electronics Conference; 2011 Feb. p. 211–212..
  • Sinha, AK, Verma, R, Gupta, RK, Kumar, L, Joshi, SN, Jain, PK, and Basu, BN, 1992. Simplified tape model of arbitrarily loaded helical slow-wave structure of a travelling-wave tube, Proc IEE. 139 (1992), pp. 347–349.
  • Ghosh, S, Jain, PK, and Basu, BN, 1997. Rigorous tape analysis of inhomogeneously loaded helical slow-wave structures, IEEE Trans. Electron Devices 44 (1997), pp. 1158–1168.
  • Basu, B.N., 1995. Electromagnetic Theory and Applications in Beam-Wave Electronics. Singapore: World Scientific; 1995.
  • Vallecchi, A, Capolino, F, and Schuchinsky, AG, 2009. 2-D isotropic effective negative refractive index metamaterial in planar technology, IEEE Microwave Wirel. Compon. Lett. 19 (2009), pp. 269–271.
  • Markley, L, and Elfetheriades, GV, 2007. A negative refractive index metamaterial for incident plane waves of arbitrary polarization, IEEE Antennas Wirel. Propag. Lett. 6 (2007), pp. 28–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.