140
Views
15
CrossRef citations to date
0
Altmetric
Articles

All-optical switches using solitons within nonlinear fibers

&
Pages 2288-2297 | Received 03 Jun 2013, Accepted 27 Aug 2013, Published online: 24 Sep 2013

References

  • KivsharYS. Nonlinear optics: the next decade. Opt. Express. 2008;16:22126–22128.
  • KeilR, HeinrichM, DreisowF, PertschT, TünnermannA, NolteS, ChristodoulidesDN, SzameitA. All-optical routing and switching for three-dimensional photonic circuitry. Scientific Rep. 2011;94:1–6.
  • FerreiraAC, CostaMB, CoêlhoAG, SobrinhoCS, LimaJL, MenezesJW, LyraML, SombraAS. Analysis of the nonlinear optical switching in a Sagnac interferometer with non-instantaneous Kerr effect. Opt. Commun. 2012;285:1408–1417.
  • SahaM, SarmaAK, BiswasA. Dark optical solitons in power law media with time-dependent coefficients. Phys. Lett. A. 2009;373:4438–4441.
  • GreenP, BiswasA. Bright and dark optical solitons with time-dependent coefficients in non-Kerr law media. Commun. Nonlinear Sci. Numer. Simulat. 2010;15:3865–3873.
  • TopkaraE, MilovicD, SarmaAK, ZerradE, BiswasA. Optical solitons with non-Kerr law nonlinearity and intermodal dispersion with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simulat. 2010;15:2320–2330.
  • Biswas A, Khan K, Rahman A, Yildirim A, Hayat T, Aldossary OM. Bright and dark optical solitons in birefringent fibers with Hamiltonian perturbations and Kerr law nonlinearity. J. Optoelectron. Adv. Mater. 2012;14:571–576.
  • BiswasA, FessakM, JohnsonS, BeatriceS, MilovicD, JovanoskiZ, KohlR, MajidF. Optical soliton perturbation in non-Kerr law media: Traveling wave solution. Opt. Laser Technol. 2012;44:1775–1780.
  • Biswas A, Milovic D. Optical solitons in 1+2 dimensions with time-dependent dispersion, nonlinearity and attenuation in a Kerr-law media. J. Electromagn. Waves Appl. 2008;22: 1801–1808.
  • LiuWJ, TianB, LiM, WangP, JiangY. Pulse compression and pedestal suppression for the high-order solitons. J. Electromagn. Waves Appl. 2012;26:1261–1273.
  • PrasadS, SarkarRK, SrivastavaA, MedhekarS. Coupled propagation in electromagnetically induced transparent medium; thirring type soliton pairs and breather pairs. J. Electromagn. Waves Appl. 2011;25:923–933.
  • BlowKJ, DoranNJ, NayarBK. Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Opt. Lett. 1989;14:754–756.
  • SilvaMG, SombraAS. All-optical soliton switching in three-core nonlinear fiber couplers. Opt. Commun. 1998;145:281–290.
  • AgrawalGP. Nonlinear fiber optics. San Diego: Academic Press; 2007.
  • KartashovYV, VysloukhVA, TornerL. Solitons in complex optical lattices. Eur. Phys. J. Special Topics. 2009;173:87–105.
  • KivsharYS. Switching dynamics of solitons in fiber directional couplers. Opt. Lett. 1993;18:7–9.
  • KumarA, KumarA. A comparative numerical study of soliton switching in a nonlinear directional coupler with saturating nonlinearity. Opt. Commun. 1998;150:91–96.
  • MelloniA, ChinelloM, MartinelliM. All-optical switching in phase-shifted fiber Bragg grating. IEEE Photonic. Tech. Lett. 2000;12:42–44.
  • BetlejA, SuntsovS, MakrisKG, JankovicL, ChristodoulidesDN, StegemanGI, FiniJ, BiseRT, DiGiovanniDJ. All-optical switching and multifrequency generation in a dual-core photonic crystal fiber. Opt. Lett. 2006;31:1480–1482.
  • SerakSV, TabiryanNV, PecciantiM, AssantoG. Spatial soliton all-optical logic gates. IEEE Photonic. Tech. Lett. 2006;18:1287–1289.
  • LiQL, XieYY, ZhuYF, QianS. Soliton switching and propagation in two-core nonlinear fiber coupler with high order coupling coefficient. Opt. Commun. 2008;281:2811–2818.
  • NishizawaN. Highly functional all-optical control using ultrafast nonlinear effects in optical fibers. IEEE J. Quantum Electron. 2009;45:1446–1455.
  • PhongsanamP, MitathaS, TeekaC, YupapinPP. All optical half adder/subtractor using dark-bright soliton conversion control. Microw. Opt. Tech. Lett. 2011;53:1541–1544.
  • LiuM, ChiangKS. Nonlinear switching of ultrashort pulses in multicore fibers. IEEE J. Quantum Electron. 2011;47:1499–1505.
  • KivsharYS, AgrawalGP. Optical solitons: from fibers to photonic crystals. San Diego: Academic Press; 2003.
  • LiQL, ZhangAX, HuaXF. Numerical simulation of solitons switching and propagating in asymmetric directional couplers. Opt. Commun. 2012;285:118–123.
  • WilsonJ, StegemanGI, WrightEM. All-optical switching of solitons in an active nonlinear directional coupler. Opt. Quant. Electron. 1992;24:S1325–S1336.
  • CastroFM, MolinaMI, DeeringWD. Controlling all-optical switching in multicore nonlinear couplers. Opt. Commun. 2003;226:199–204.
  • AlmeidaJS, MenezesJW, SilvaMG, SombraAS, FragaWB, SalesJC. Logic gates based in asymmetric couplers: numerical analysis. Fiber Integrated Opt. 2007;26:217–228.
  • KhanKR, WuTX, ChristodoulidesDN, StegemanGI. Soliton switching and multi-frequency generation in a nonlinear photonic crystal fiber coupler. Opt. Express. 2008;16:9417–9428.
  • HaS, SukhorukovAA. Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers. J. Opt. Soc. Am. A. 2008;25:C15–C22.
  • HeXJ, XieK, XiangAP. Optical solitons switching in asymmetric dual-core nonlinear fiber couplers. Optik. 2011;122:1222–1224.
  • SarmaAK. Vector soliton switching in a fiber nonlinear directional coupler. Opt. Commun. 2011;284:186–190.
  • DesyatnikovAS, DennisMR, FerrandoA. All-optical discrete vortex switch. Phys. Rev. A. 2011;83:063822.
  • CaoXD, MeyerhoferDD. All-optical switching by means of collisions of spatial vector solitons. Opt. Lett. 1994;19:1711–1713.
  • WuYD. New all-optical switch based on the spatial soliton repulsion. Opt. Express. 2006;14:4005–4012.
  • KazantsevaEV, MaimistovAI, OzhenkoSS. Solitary electromagnetic wave propagation in the asymmetric oppositely directed coupler. Phys. Rev. A. 2009;80:043833.
  • VicencioRA, MolinaMI, KivsharYS. All-optical switching and amplification of discrete vector solitons in nonlinear cubic birefringent waveguide arrays. Opt. Lett. 2004;29:2905–2907.
  • QiYH, NiuYP, XiangY, JinSQ, GongSQ. Control of resonant weak-light solitons via a periodic modulated control field. Phys. Rev. E. 2010;82:016602.
  • KheradmandR, DastmalchiB. Optical pattern switching in semiconductor microresonators as all-optical switch. ETRI J. 2009;31:593–597.
  • KannaT, LakshmananM, DindaPT, AkhmedievN. Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E. 2006;73:026604.
  • VijayajayanthiM, KannaT, LakshmananM. Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations. Phys. Rev. A. 2008;77:013820.
  • JiangY, TianB, LiuWJ, SunK, LiM, WangP. Soliton interactions and complexes for coupled nonlinear Schrödinger equations. Phys. Rev. E. 2012;85:036605.
  • KannaT, VijayajayanthiM, LakshmananM. Periodic energy switching of bright solitons in mixed coupled nonlinear Schrödinger equations with linear self-coupling and cross-coupling terms. Phys. Rev. A. 2007;76:013808.
  • LiuWJ, TianB, ZhenHL, JiangY. Analytic study on solitons in gas-filled hollow-core photonic crystal fibers. Europhys. Lett. 2012;100:64003.
  • HirotaR. The direct method in soliton theory. Cambridge: Cambridge University Press; 2004.
  • HirotaR. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971;27:1192–1194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.