83
Views
6
CrossRef citations to date
0
Altmetric
Articles

A comparative study of band Faraday effects in 3D magnetized photonic crystals with different high-symmetry lattices with uniaxial materials

, &
Pages 165-183 | Received 13 Jun 2013, Accepted 23 Oct 2013, Published online: 14 Nov 2013

References

  • Yablonovitch E. Inhibited spontaneous emission of photons in solidstate physics and electronies. Phys. Rev. Lett. 1987;58:2059–2061.
  • John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987;58:2486–2489.
  • Jim KL, Wang DY, Leung CW, Choy CL, Chan HLW. One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films. J. Appl. Phys. 2008;103:083107-1–083107-6.
  • Ryckman JD, Weiss SM. Low mode volume slotted photonic crystal single nanobeam cavity. Appl. Phys. Lett. 2012;101:071104-1–071104-4.
  • Sirigiri JR, Kreischer KE, Machuzak J, Mastovsky I, Shapiro MA, Temkin RJ. Photonic-band-gap resonator gyrotron. Phys. Rev. Lett. 2001;86:5628-1–5628-4.
  • Smirnova EI, Kesar AS, Mastovsky I, Shapiro MA, Temkin RJ. Demonstration of a 17 GHz, high-gradient accelerator with a photonic-band-gap structure. Phys. Rev. Lett. 2005;95:074801-1–074801-4.
  • Fan C, Wang J, Zhu S, He J, Ding P, Liang E. Optical properties in one-dimensional graded soft photonic crystals with ferrofluids. J. Opt. 2013;15:055103-1–055103-6.
  • Zhang HF, Li M, Liu SB. Study periodic band gap structure of the magnetized plasma photonic crystals. Optelectron. Lett. 2009;5:112–116.
  • Zhang HF, Liu SB, Kong XK, Bian BR, Dai Y. Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals. Solid State Commun. 2012;152:2113–2119.
  • Kuzmiak V, Maradudin AA. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components. Phys. Rev. B. 1998;58:7230–7251.
  • Hojo H, Mase A. Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals. Plasma Fusion Res. 2004;80:89–90.
  • Sakai O, Tachibana K. Plasma as metamaterial: a review. Plasma Sources Sci. Technol. 2012;21:013001-1–013001-18.
  • Li C, Liu S, Kong X, Zhang H, B Bian, X Zhang. A novel comb-like plasma photonic crystals filter in the presence of evanescent wave. IEEE Trans. Plasma Sci. 2011;39:1969–1973.
  • Zhang HF, Liu SB, Kong XK, Zhou L, Li CZ, Bian BR. Enlargerd omnidirectional photonic photonic band gap in heterostructure of plasma and dielectric photonic crystals. Optik. 2013;124:751–756.
  • Shiverhwari L. Zero permittivity band characteristics in one-dimensional plasma dielectric photonic crystals. Optik. 2011;122:1523–1526.
  • Zhang HF, Liu SB, Kong XK. Enlarged the omnidirectional band gap in one-dimensional plasma photonic crystals with ternary Thue-Morse aperiodic structure. Physica B. 2013;410:244–250.
  • Zhang HF, Liu SB, Kong XK, Zou L, Li CZ, Qing WS. Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer. Phys. Plasmas. 2012;19:022103-1–022103-7.
  • Zhang HF, Liu SB, Kong XK, Bian BR, Dai Y. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure. Phys. Plasmas. 2012;19:122102-1–122102-9.
  • Sakaguchi T, Sakai O, Tachibana K. Photonic bands in two-dimensional mircoplasma array II. Band gaps observed in millimeter and sub-terahertz ranges. J. Appl. Phys. 2007;101:073305-1–073305-7.
  • Sakai O, Sakaguchi T, Tachibana K. Photonic bands in two-dimensional mircoplasma array I. Theoretical derivation of band structure of electromagnetic waves. J. Appl. Phys. 2007;101:073304-1–073304-8.
  • Fan W, Dong L. Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge. Phys. Plasmas. 2010;17:073506-1–073506-6.
  • Ginzberg VL. The propagation of electromagnetic waves in plasmas. New York: Pergamon; 1970.
  • Liu SB, Gu CQ, Zhou JJ, Yuan NC. FDTD simulation for magnetized plasma photonic crystals. Acta Phys. Sin. 2006;55:1283–1288.
  • Qi L, Yang Z, Fu T. Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer. Phys. Plasmas. 2012;19:012509-1–012509-6.
  • Zhang HF, Liu SB, Kong XK. Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary declination. Phys. Plasmas. 2012;19:122103-1–122103-13.
  • Hamidi SM. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals. Phys. Plasmas. 2012;19:012503-1–012503-8.
  • Mehdian H, Mohammadzahery Z, Hasanbeigi A. Analysis of plasma-magnetic photonic crystals with a tunable band gap. Phys. Plasmas. 2013;20:043505-1–043505-8.
  • Qi L. Photonic band structures of two-dimensional magnetized plasma photonic crystals. J. Appl. Phys. 2012;111:073301-1–073301-8.
  • Fu T, Yang Z, Shi Z, Lan F, Li D, Gao X. Dispersion properties of a 2D magnetized plasma metallic photonic crystals. Phys. Plasmas. 2013;20:023109-1–023109-5.
  • Zhang HF, Liu SB, Kong XK, Bian BR, Guo YN. Dispersion properties of two-dimensioanl plasma photonic crystals with periodically external magnetic field. Solid State Commun. 2012;152:1221–1229.
  • Qi L, Zhang X. Band gap characteristics of plasma with periodically varying external magnetic field. Solid State Commun. 2011;151:1838–1841.
  • Zhang HF, Liu SB, Li BX. The properties of photonic band gaps for three-dimensional tunable photonic crystals with simple-cubic lattices doped by magnetized plasma. Opt. Laster Technol. 2013;50:93–102.
  • Zhang HF, Liu SB, Yang H, Kong XK. Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma. Phys. Plasmas. 2013;20:032118-1–032118-15.
  • Zhang HF, Liu SB, Kong XK. Analysis of Voigt effects in dispersive properties for tunable three-dimensional face-centered-cubic magnetized plasma photonic crystals. J. Electromagn. Waves Appl. 2013;27:1276–1296.
  • Li ZY, Wang J, Gu BY. Creation of partial gaps in anisotropic photonic-band-gap structures. Phys. Rev. B. 1998;58:3721–3729.
  • Malkova N, Kim S, Dilazaro T, Gopalan V. Symmetrical analysis of complex two-dimensional hexagonal photonic crystals. Phys. Rev. B. 2003;67:125203-1–125203-9.
  • Li ZY, Gu BY, Yang GY. Large absolute band gap in 2D anisotropic photonic crystals. Phys. Rev. Lett. 1998;81:2574–2577.
  • Li Z, Lin L. Photonic band structures solved by a plane-wave-based transfer-matrix method. Phys. Rev. E. 2003;67:056702-1–056702-11.
  • Marrone M, Rodriguez-Esquerre VF, Hernández-Figueroa HE. Novel numerical method for the analysis of 2D photonic crystals: the cell method. Opt. Exp. 2002;10:1299–1304.
  • Jun S, Cho YS, Im S. Moving least-square method for the band-structure calculation of 2D photonic crystals. Opt. Exp. 2003;11:541–551.
  • Zhang HF, Liu SB, Kong XK, Zhou L, Li CZ, Bian BR. Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101,073304 (2007)]. J. Appl. Phys. 2011;110:026104-1–026104-3.
  • Cassagne D, Jouanin C, Bertho D. Hexagonal photonic-band-gap structures. Phys. Rev. B. 1996;53:7134–7142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.