103
Views
2
CrossRef citations to date
0
Altmetric
Articles

High-performance resonator based on single-walled carbon nanotube bundle for THz application

, , &
Pages 316-325 | Received 07 Feb 2013, Accepted 06 Nov 2013, Published online: 24 Dec 2013

References

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • Cui J-P, Yin W-Y. Transfer function and compact distributed RLC models of carbon nanotube bundle interconnets and their applications. Prog. Electromagnet. Res. 2010;104:69–83.
  • Mikki SM, Kishk AA. A symmetry-based formalism for the electrodynamics of nanotubes. Prog. Electromagnet. Res. 2008;86:111–134.
  • Attiya AM. Lower frequency limit of carbon nanotube antenna. Prog. Electromagnet. Res. 2009;94:419–433.
  • Dai Q, Butt H, Rajasekharan R, Wilkinson TD, Amaratunga GAJ. Fabrication of carbon nanotubes on inter-digitated metal electrode for switchable nanophotonic devices. Prog. Electromagnet. Res. 2012;127:65–77.
  • Yamacli S, Avci M. Accurate voltage-dependent transmission line model for carbon nanotube interconnects and the delay calculation. J. Electromagn. Waves Appl. 2011;25:553–563.
  • Zhang Z, Dou W. Binary diffractive small lens array for THz imaging system. J. Electromagn. Waves Appl. 2011;25:177–187.
  • Mineo M, Di Carlo A, Paoloni C. Analytical design method for corrugated rectangular waveguide SWS THz vacuum tubes. J. Electromagn. Waves Appl. 2010;24:2479–2494.
  • Zhu FM, Zhang YY, Shen LF, Gao Z. Subwavelength guiding of Terahertz radiation by shallowly corrugated metal surfaces. J. Electromagn. Waves Appl. 2012;26:120–129.
  • Diao JM, Yang F, Nie ZP, Ouyang J, Yang P. Separated fractal antennas for improved emission performance of Terahertz radiations. J. Electromagn. Waves Appl. 2012;26:1158–1167.
  • Gao Z, Wang Z-Y. Terahertz plasmonic cross resonant antenna. J. Electromagn. Waves Appl. 2011;25:1730–1739.
  • Sabah C. Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators. J. Electromagn. Waves Appl. 2012;26:1105–1115.
  • Hasar UC, Abusoglu A. Using millimeter and Terahertz frequencies for complex permittivity retrieval of low-loss materials. J. Electromagn. Waves Appl. 2011;25:2389–2398.
  • Hao J, Hanson GW. Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotechnol. 2006;5:766–775.
  • Huang Y, Yin W-Y, Liu QH. Performance prediction of carbon nanotube bundle dipole antennas. IEEE Trans. Nanotechnol. 2008;7:331–337.
  • Fallahi A, Carrier JP. Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B. 2012;86:195408.
  • Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J. Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett. 2012;101:214102.
  • Burke PJ. An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2003;2:55–58.
  • Li S-D, Yu Z, Yen S-F, Burke PJ, Tang W-C. Carbon nanotube GHz nano-resonator. in Int. Microw. Symp. Dig Fort Worth, USA. 2004;2:987–990.
  • Huang Y, Wu L-S, Tang M, Mao J. Study on multi-walled carbon nanotube resonator. in Int. Conf. Electromag. Adv. Applica. Dig., Sydney, Australia, Sep 2010;2010:59–62.
  • Sarto MS, Tamburrano A, D’Amore M. New electron-waveguide-based modeling for carbon nanotube interconnects. IEEE Trans. Nanotechnol. 2009;8:214–225.
  • D’Amore M, Sarto MS, Tamburrano A. Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 2010;52:496–503.
  • Léonard F, Tersoff J. Dielectric response of semiconducting carbon nanotubes. Appl. Phys. Lett. 2002;81:4835–4837.
  • Naeemi A, Meindl JD. Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans. Electron Devices. 2008;55:2574–2582.
  • Naeemi A, Meindl JD. Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett. 2007;28:135–138.
  • Q3D Extractor, Version 8, Ansoft Corp., 2008.
  • Paul CR. Analysis of multiconductor transmission lines. Hoboken, NJ: Wiley; 1994.
  • Easter B. Radiation from half-wavelength open-circuit microstrip resonators. Electron. Lett. 1970;6:573–574.
  • Wheeler HA. Transmission-line properties of parallel strips separated by a dielectric sheet. IEEE Trans. Microwave Theory Tech. 1965;13:172–185.
  • Yuan J, Wen B, Hou ZL, Lu M-M, Cao W-Q, Ba C, Fang X-Y, Cao M-S. High-temperature permittivity and data-mining of silicon dioxide at GHz band. Chin. Phys. Lett. 2012;29:027701-1–027701-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.